Integrable Solutions and Continuous Dependence of a Nonlinear Singular Integral Inclusion of Fractional Orders and Applications

Main Article Content

Nesreen F. M. El-Haddad

Abstract

Let E be a reflexive Banach space. In this article we study the existence of integrable solutions in the space of all lesbesgue integrable functions on E, L1([0,T],E), of the nonlinear singular integral inclusion of fractional orders beneath the assumption that the multi-valued function G has Lipschitz selection in E. The main tool applied in this work is the Banach contraction fixed point theorem. Moreover, the paper explores a qualitative property associated with these solutions for the given problem such as the continuous dependence of the solutions on the set of selections S1G(τ,x(τ)). As an application, the existence of integrable solutions of the two nonlocal and weighted problems of the fractional differential inclusion is investigated. We additionally provide an example given as a numerical application to demonstrate the effectiveness and value of our results.

Article Details

References

  1. T. Cardinali, F. Papalini, SOme Results on Stability and on Characterization of K-Convexity of Set-Valued Functions, Ann. Polon. Math. 58 (1993), 185–192. https://doi.org/10.4064/ap-58-2-185-192.
  2. A.M.A. El-Sayed, A.G. Ibrahim, Multivalued Fractional Differential Equations, Appl. Math. Comput. 68 (1995), 15–25. https://doi.org/10.1016/0096-3003(94)00080-n.
  3. K. Nikodem, On Quadratic Set-Valued Functions, Publ. Math. Debrecen, 30 (1984), 297–301.
  4. K. Nikodem, On Jensen’s Functional Equation for Set-Valued Functions, Rad. Mat. 3 (1987), 23–33.
  5. K. Nikodem, Set-Valued Solutions of the Pexider Functional Equations, Funkcialaj Ekvacioj, 31 (1988), 227–231.
  6. D. Popa, Functional Inclusions on Square-Symmetric Grupoids and Hyers-Ulam Stability, Math. Ineq. Appl. 7 (2004), 419–428. https://doi.org/10.7153/mia-07-42.
  7. D. Popa, A Property of a Functional Inclusion Connected with Hyers-Ulam Stability, J. Math. Ineq. 3 (2009), 591–598. https://doi.org/10.7153/jmi-03-57.
  8. I. Shlykova, A. Bulgakov, A. Ponosov, Functional Differential Inclusions Generated by Functional Differential Equations With Discontinuities, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 3518–3530. https://doi.org/10.1016/j.na.2011.02.037.
  9. H.V.S. Chauhan, B. Singh, C. Tunc, O. Tunc, On the Existence of Solutions of Non-Linear 2D Volterra Integral Equations in a Banach Space, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116 (2022), 101. https://doi.org/10.1007/s13398-022-01246-0.
  10. O. Tunc, C. Tunc, G. Petrusel, J. Yao, On the Ulam Stabilities of Nonlinear Integral Equations and Integro-differential Equations, Math. Meth. Appl. Sci. 47 (2024), 4014–4028. https://doi.org/10.1002/mma.9800.
  11. O. Tunc, C. Tunc, J.-C. Yao, Global Existence and Uniqueness of Solutions of Integral Equations with Multiple Variable Delays and Integro Differential Equations: Progressive Contractions, Mathematics 12 (2024), 171. https://doi.org/10.3390/math12020171.
  12. B. Dhage, A Functional Integral Inclusion Involving Caratheodories, Elec. J. Qual. Theory Diff. Equ. 2003 (2003), 14. https://doi.org/10.14232/ejqtde.2003.1.14.
  13. D. O’Regan, Integral Inclusions of Upper Semi-Continuous or Lower Semi-Continuous Type, Proc. Amer. Math. Soc. 124 (1996), 2391–2399. https://www.jstor.org/stable/2161624.
  14. J.P. Aubin, A. Cellina, Differential Inclusions, Springer, 1984.
  15. B.C. Dhage, A Functional Integral Inclusion Involving Discontinuities, Fixed Point Theory, 5 (2004), 53–64.
  16. M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary Value Problems for Differential Equations With Fractional Order and Nonlocal Conditions, Nonlinear Anal.: Theory Meth. Appl. 71 (2009), 2391–2396. https://doi.org/10.1016/j.na.2009.01.073.
  17. M. Bohner, O. Tunc, C. Tunc, Qualitative Analysis of Caputo Fractional Integro-Differential Equations With Constant Delays, Comput. Appl. Math. 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3.
  18. S. Hristova, C. Tunc, Stability of Nonlinear Volterra Integro-Differential Equations With Caputo Fractional Derivative and Bounded Delays, Elec. J. Diff. Equ. 2019 (2019), 30.
  19. O. Tunc, C. Tunc, Solution Estimates to Caputo Proportional Fractional Derivative Delay Integro-Differential Equations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (2022), 12. https://doi.org/10.1007/s13398-022-01345-y.
  20. J. Banas, Applications of Measures of Weak Noncompactness and Some Classes of Operators in the Theory of Functional Equations in the Lebesgue Space, Nonlinear Anal.: Theory Meth. Appl. 30 (1997), 3283–3293. https://doi.org/10.1016/s0362-546x(96)00157-5.
  21. Z. Knap, J. Banas, Integrable Solutions of a Functional-Integral Equation, Rev. Mat. Complut. 2 (1989), 31–40. https://doi.org/10.5209/rev_rema.1989.v2.n1.18145.
  22. A. Bressan, Selections of Lipschitz Multifunctions Generating a Continuous Flow, Diff. Integr. Equ. 4 (1991), 483– 490. https://doi.org/10.57262/die/1372700423.
  23. S. Cobzas, R. Miculescu, A. Nicolae, Lipschitz Functions, Springer, 2019.
  24. K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
  25. A.M.A. EL-Sayed, Y. Khouni, Measurable-Lipschitz Selections and Set-Valued Integral Equations of Fractional, J. Fract. Calc. Appl. 2 (2012), 1–8.
  26. I. Kupka, Continuous Selections for Lipschitz Multifunctions, Acta Math. Univ. Comen. New Ser. 74 (2005), 133-141. http://eudml.org/doc/127016.
  27. P. Shvartsman, Lipschitz Selections of Set-Valued Mappings and Helly’s Theorem, J. Geom. Anal. 12 (2002), 289–324. https://doi.org/10.1007/bf02922044.
  28. J. Dugundji, A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1982.