Exploring Nonlinear Fractional (2+1)-Dimensional KP–Burgers Model: Derivation and Ion Acoustic Solitary Wave Solution

Main Article Content

Khalid A. Alsatami

Abstract

The purpose of this study is to conduct a complete examination into the fractional (2+1)-dimensional nonlinear KP-Burgers (KP-B) model in the setting of quantum plasma. The main goal is to present a mathematical explanation and derivation for the fractional (2+1)-dimensional nonlinear KP-B model. We used the reductive perturbation technique to obtain the fractional (2+1)-dimensional ion acoustic solitary wave, which leads to the nonlinear KP-B model. To solve the fractional space-time KP-B model, we used the modified sub-equation technique and the extended hyperbolic function methodology. This methodology covers rational, periodic wave, and hyperbolic function solutions. Ion acoustic waves were explored in relation to the effects of ion pressure and an external electric field. The effects of density and fractional order on the properties of a single solution are examined. The plasma system is defined as an unmagnetized epi plasma system composed of relativistic ions, positrons, and nonextensive electrons that can be found in a range of astrophysical and cosmological environments. The solution variables include electron-positron and ion-electron temperature ratios, electron and positron nonextensivity strength, ion kinematic viscosity, positron concentration, and the weakly relativistic streaming factor. The fractional order and associated plasma properties have a considerable influence on the phase velocity of ion acoustic waves. When the fractional order equals one, the obtained results are consistent with known outcomes. This work makes a substantial contribution to our understanding of nonlinear events in quantum plasmas, particularly ion acoustic waves. It provides a solid approach for solution development and analysis, with implications for a variety of astrophysical and cosmological scenarios.

Article Details

References

  1. G.C. Das, S.N. Paul, Ion-Acoustic Solitary Waves in Relativistic Plasmas, Phys. Fluids 28 (1985), 823–825. https://doi.org/10.1063/1.865050.
  2. Y. Nejoh, The Effect of the Ion Temperature on the Ion Acoustic Solitary Waves in a Collisionless Relativistic Plasma, J. Plasma Phys. 37 (1987), 487–495. https://doi.org/10.1017/s0022377800012320.
  3. Y. Wang, Z. Zhou, X. Jiang, H. Zhang, Y. Jiang, C. Hou, X. Sun, R. Qin, Cylindrical Kadomtsev–Petviashvili Equation for Relativistically Magnetosonic Solitary Wave in the Collisionless Plasma, Phys. Lett. A 355 (2006), 386–389. https://doi.org/10.1016/j.physleta.2006.03.001.
  4. W.M. Moslem, I. Kourakis, P.K. Shukla, R. Schlickeiser, Nonlinear excitations in electron-positron-ion plasmas in accretion disks of active galactic nuclei, Phys. Plasmas 14 (2007), 102901. https://doi.org/10.1063/1.2795127.
  5. W. Masood, N. Jehan, A.M. Mirza, P.H. Sakanaka, Planar and Non-Planar Ion Acoustic Shock Waves in Electron–Positron–Ion Plasmas, Phys. Lett. A 372 (2008), 4279–4282. https://doi.org/10.1016/j.physleta.2008.03.058.
  6. T.S. Gill, A. Singh, H. Kaur, N.S. Saini, P. Bala, Ion-Acoustic Solitons in Weakly Relativistic Plasma Containing Electron–Positron and Ion, Phys. Lett. A 361 (2007), 364–367. https://doi.org/10.1016/j.physleta.2006.09.053.
  7. T.S. Gill, A.S. Bains, N.S. Saini, Ion Acoustic Soliton in Weakly Relativistic Magnetized Electron–Positron–Ion Plasma, Can. J. Phys. 87 (2009), 861–866. https://doi.org/10.1139/p09-046.
  8. M. Tribeche, L. Djebarni, Electron-Acoustic Solitary Waves in a Nonextensive Plasma, Phys. Plasmas 17 (2010), 124502. https://doi.org/10.1063/1.3522777.
  9. H.R. Pakzad, Ion Acoustic Shock Waves in Dissipative Plasma with Superthermal Electrons and Positrons, Astrophys. Space Sci. 331 (2010), 169–174. https://doi.org/10.1007/s10509-010-0424-9.
  10. H.R. Pakzad, M. Tribeche, Nonlinear Propagation of Ion-Acoustic Shock waves in Dissipative Electron–Positron–Ion Plasmas with Superthermal Electrons and Relativistic Ions, J. Fusion Energ. 32 (2012), 171–176. https://doi.org/10.1007/s10894-012-9543-3.
  11. M.G. Hafez, M.R. Talukder, Ion Acoustic Solitary Waves in Plasmas with Nonextensive Electrons, Boltzmann Positrons and Relativistic Thermal Ions, Astrophys. Space Sci. 359 (2015), 27. https://doi.org/10.1007/s10509-015-2480-7.
  12. M.G. Hafez, M.R. Talukder, R. Sakthivel, Ion Acoustic Solitary Waves in Plasmas with Nonextensive Distributed Electrons, Positrons and Relativistic Thermal Ions, Indian J. Phys. 90 (2015), 603–611. https://doi.org/10.1007/s12648-015-0782-9.
  13. K. Javidan, D. Saadatmand, Effect of High Relativistic Ions on Ion Acoustic Solitons in Electron-Ion-Positron Plasmas with Nonthermal Electrons and Thermal Positrons, Astrophys. Space Sci. 333 (2011), 471–475. https://doi.org/10.1007/s10509-011-0645-6.
  14. H.K. Malik, Effect of Electron Inertia on KP Solitons in a Relativistic Plasma, Physica D: Nonlinear Phenomena 125 (1999), 295–301. https://doi.org/10.1016/s0167-2789(98)00250-4.
  15. H.K. Malik, Ion Acoustic Solitons in a Weakly Relativistic Magnetized Warm Plasma, Phys. Rev. E 54 (1996), 5844–5847. https://doi.org/10.1103/physreve.54.5844.
  16. H.K. Malik, Ion Acoustic Solitons in a Relativistic Warm Plasma with Density Gradient, IEEE Trans. Plasma Sci. 23 (1995), 813–815. https://doi.org/10.1109/27.473199.
  17. R. Malik, H.K. Malik, S.C. Kaushik, Study of Solitary Waves in e-p Pair Plasma: Effect of Weakly Relativistic Species, AIP Conf. Proc. 1536 (2013), 1111–1112. https://doi.org/10.1063/1.4810625.
  18. K. Singh, V. Kumar, H.K. Malik, Electron Inertia Contribution to Soliton Evolution in an Inhomogeneous Weakly Relativistic Two-Fluid Plasma, Phys. Plasmas 12 (2005), 072302. https://doi.org/10.1063/1.1943609.
  19. K. Singh, V. Kumar, H.K. Malik, Electron Inertia Effect on Small Amplitude Solitons in a Weakly Relativistic Two-Fluid Plasma, Phys. Plasmas 12 (2005), 052103. https://doi.org/10.1063/1.1894398.
  20. D.K. Singh, H.K. Malik, Solitons in Inhomogeneous Magnetized Negative Ion Containing Plasma With Two Temperature Nonisothermal Electrons, IEEE Trans. Plasma Sci. 36 (2008), 462–468. https://doi.org/10.1109/tps.2008.918674.
  21. R. Malik, H.K. Malik, S.C. Kaushik, Soliton Propagation in a Moving Electron-Positron Pair Plasma Having Negatively Charged Dust Grains, Phys. Plasmas 19 (2012), 032107. https://doi.org/10.1063/1.3691841.
  22. H.K. Malik, R. Malik, Unperturbed State and Solitary Structures in an Electron-Positron Plasma Having Dust Impurity and Density Inhomogeneity, J. Plasma Phys. 80 (2014), 629–641. https://doi.org/10.1017/s002237781400004x.
  23. A. Lavagno, D. Pigato, Nonextensive Statistical Effects in Protoneutron Stars, Eur. Phys. J. A. 47 (2011), 52. https://doi.org/10.1140/epja/i2011-11052-1.
  24. A.R. Plastino, A. Plastino, Stellar Polytropes and Tsallis’ Entropy, Phys. Lett. A 174 (1993), 384–386. https://doi.org/10.1016/0375-9601(93)90195-6.
  25. G. Gervino, A. Lavagno, D. Pigato, Nonextensive Statistical Effects in the Quark-Gluon Plasma Formation at Relativistic Heavy-Ion Collisions Energies, Centr. Eur. J. Phys. 10 (2012), 594–601. https://doi.org/10.2478/s11534-011-0123-3.
  26. H.R. Miller, P.J. Wiita, Active Galactic Nuclei, Springer, Berlin, 1987.
  27. F.C. Michel, Theory of Pulsar Magnetospheres, Rev. Mod. Phys. 54 (1982), 1–66. https://doi.org/10.1103/revmodphys.54.1.
  28. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, 1st ed, Elsevier, Amsterdam, 2006.
  29. R. Hilfer, Applications of Fractional Calculus in Physics, World science, Singapore, 2000.
  30. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. https://cir.nii.ac.jp/crid/1130282270123129216.
  31. Y.A. Azzam, E.A.-B. Abdel-Salam, M.I. Nouh, Artificial Neural Network Modeling of the Conformable Fractional Isothermal Gas Spheres, Rev. Mex. Astron. Astrofis. 57 (2021), 189–198. https://doi.org/10.22201/ia.01851101p.2021.57.01.14.
  32. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  33. G.F. Hassan, E.A. Abdel‐Salam, R.A. Rashwan, Approximation of Functions by Complex Conformable Derivative Bases in Fréchet Spaces, Math. Methods Appl. Sci. 46 (2022), 2636–2650. https://doi.org/10.1002/mma.8664.
  34. M. Zayed, G. Hassan, E.A. Abdel‐Salam, On the Convergence of Series of Fractional Hasse Derivative Bases in Fréchet Spaces, Math. Methods Appl. Sci. 47 (2024), 8366–8384. https://doi.org/10.1002/mma.10018.
  35. E.A.B. Abdel-Salam, E.A. Yousif, Solution of Nonlinear Space-Time Fractional Differential Equations Using the Fractional Riccati Expansion Method, Math. Probl. Eng. 2013 (2013), 846283. https://doi.org/10.1155/2013/846283.
  36. E.A. Yousif, E.A.B. Abdel-Salam, M.A. El-Aasser, On the Solution of the Space-Time Fractional Cubic Nonlinear Schrödinger Equation, Results Phys. 8 (2018), 702–708. https://doi.org/10.1016/j.rinp.2017.12.065.
  37. S.M. Abo-Dahab, A.A. Kilany, E.A.B. Abdel-Salam, A. Hatem, Fractional Derivative Order Analysis and Temperature-Dependent Properties on p- and SV-Waves Reflection Under Initial Stress and Three-Phase-Lag Model, Results Phys. 18 (2020), 103270. https://doi.org/10.1016/j.rinp.2020.103270.
  38. M.I. Nouh, Y.A. Azzam, E.A.B. Abdel-Salam, Modeling Fractional Polytropic Gas Spheres Using Artificial Neural Network, Neural Comp. Appl. 33 (2020), 4533–4546. https://doi.org/10.1007/s00521-020-05277-9.
  39. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A New Definition of Fractional Derivative, J. Comp. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
  40. E.A.B. Abdel‐Salam, M.F. Mourad, Fractional Quasi AKNS‐Technique for Nonlinear Space–Time Fractional Evolution Equations, Math. Methods Appl. Sci. 42 (2019), 5953–5968. https://doi.org/10.1002/mma.5633.
  41. M.I. Nouh, E.A.-B. Abdel-Salam, Analytical Solution to the Fractional Polytropic Gas Spheres, Eur. Phys. J. Plus 133 (2018), 149. https://doi.org/10.1140/epjp/i2018-11980-5.
  42. E.A.B. Abdel-Salam, M.I. Nouh, Conformable Fractional Polytropic Gas Spheres, New Astronomy 76 (2020), 101322. https://doi.org/10.1016/j.newast.2019.101322.
  43. E.A.B. Abdel-Salam, M.S. Jazmati, H. Ahmad, Geometrical Study and Solutions for Family of Burgers-Like Equation with Fractional Order Space Time, Alexandria Eng. J. 61 (2022), 511–521. https://doi.org/10.1016/j.aej.2021.06.032.
  44. M.G. Hafez, M.R. Talukder, M.H. Ali, Two-Dimensional Nonlinear Propagation of Ion Acoustic Waves through KPB and KP Equations in Weakly Relativistic Plasmas, Adv. Math. Phys. 2016 (2016), 9352148. https://doi.org/10.1155/2016/9352148.
  45. A.R. Seadawy, Ion Acoustic Solitary Wave Solutions of Two‐Dimensional Nonlinear Kadomtsev–Petviashvili–Burgers Equation in Quantum Plasma, Math. Methods Appl. Sci. 40 (2016), 1598–1607. https://doi.org/10.1002/mma.4081.
  46. W.A. Faridi, U. Asghar, M.I. Asjad, A.M. Zidan, S.M. Eldin, Explicit Propagating Electrostatic Potential Waves Formation and Dynamical Assessment of Generalized Kadomtsev–Petviashvili Modified Equal Width-Burgers Model with Sensitivity and Modulation Instability Gain Spectrum Visualization, Results Phys. 44 (2023), 106167. https://doi.org/10.1016/j.rinp.2022.106167.
  47. U. Asghar, M.I. Asjad, W.A. Faridi, A. Akgül, Novel Solitonic Structure, Hamiltonian Dynamics and Lie Symmetry Algebra of Biofilm, Part. Diff. Equ. Appl. Math. 9 (2024), 100653. https://doi.org/10.1016/j.padiff.2024.100653.
  48. U. Asghar, M.I. Asjad, M.B. Riaz, T. Muhammad, Propagation of Solitary Wave in Micro-Crystalline Materials, Results Phys. 58 (2024), 107550. https://doi.org/10.1016/j.rinp.2024.107550.
  49. U. Asghar, M.I. Asjad, W.A. Faridi, T. Muhammad, The Conserved Vectors and Solitonic Propagating Wave Patterns Formation with Lie Symmetry Infinitesimal Algebra, Opt. Quant. Electron. 56 (2024), 540. https://doi.org/10.1007/s11082-023-06134-4.