Inertial Bilevel Variational Monotone Inclusion Problem in Banach Spaces
Main Article Content
Abstract
In this paper, we study accelerated Halpern-type iterative method for finding zero solution of sum of two monotone operators which solves variational inequality problem of inverse strongly monotone mapping in 2-uniformly convex and uniformly smooth real Banach spaces. The strong convergence of our proposed method is establish under some standard conditions imposed on parameters. Our theorems generalize many recently announced results in the literature.
Article Details
References
- J.A. Abuchu, G.C. Ugwunnadi, O.K. Narain, Inertial Mann-Type Iterative Method for Solving Split Monotone Variational Inclusion Problem With Applications, J. Ind. Manage. Optim. 19 (2023), 3020–3043. https://doi.org/10.3934/jimo.2022075.
- F.E. Browder, W.V. Petryshyn, Construction of Fixed Points of Nonlinear Mappings in Hilbert Space, J. Math. Anal. Appl. 20 (1967), 197–228. https://doi.org/10.1016/0022-247x(67)90085-6.
- H. Iiduka, W. Takahashi and M. Toyoda, Approximation of Solutions of Variational Inequalities for Monotone Mappings, Panamer. Math. J. 20 (2004), 49–61.
- F. Liu, M.Z. Nashed, Regularization of Nonlinear Ill-Posed Variational Inequalities and Convergence Rates, SetValued Anal. 6(1998), 313–344. https://doi.org/10.1023/A:1008643727926.
- Y. Takahashi, K. Hashimoto, M. Kato, On Sharp Uniform Convexity, Smoothness and Strong Type, Cotype Inequalities, J. Nonlinear Convex Anal. 3 (2002), 267–281.
- Y.I. Alber, Metric and Generalized Projection in Banach Space: Properties and Applications, In: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Dekker, New York, pp. 15–50, 1996.
- S. Kamimura, W. Takahashi, Strong Convergence of a Proximal-Type Algorithm in a Banach Space, SIAM J. Optim. 13 (2002), 938–945. https://doi.org/10.1137/s105262340139611x.
- S. Reich, A weak convergence theorem for the alternating method with Bregman distance, In: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Dekker, New York, pp. 313–318, 1996.
- B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland Mathematics Studies, Vol. 68, North-Holland Publishing Co., Amsterdam, 1985.
- W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- V. Barbu, V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976.
- K. Aoyama, F. Kohsaka, Strongly Relatively Nonexpansive Sequences Generated by Firmly Nonexpansive-Like Mappings, Fixed Point Theory Appl 2014 (2014), 95. https://doi.org/10.1186/1687-1812-2014-95.
- Y. Shehu, Convergence Results of Forward-Backward Algorithms for Sum of Monotone Operators in Banach Spaces, Results Math. 74 (2019), 138. https://doi.org/10.1007/s00025-019-1061-4.
- H.K. Xu, Another Control Condition in an Iterative Method for Nonexpansive Mappings, Bull. Austral. Math. Soc. 65 (2002), 109–113. https://doi.org/10.1017/s0004972700020116.
- P.E. Maingé, Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization, Set-Valued Anal. 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z.
- P.L. Combettes, V.R. Wajs, Signal Recovery by Proximal Forward-Backward Splitting, Multiscale Model. Simul. 4 (2005), 1168–1200. https://doi.org/10.1137/050626090.
- A. Moudafi, M. Théra, Finding a Zero of The Sum of Two Maximal Monotone Operators, J. Optim. Theory Appl. 94 (1997), 425–448. https://doi.org/10.1023/a:1022643914538.
- A. Adamu, D. Kitkuan, A. Padcharoen, et al. Inertial Viscosity-Type Iterative Method for Solving Inclusion Problems With Applications, Math. Comput. Simul. 194 (2022), 445–459. https://doi.org/10.1016/j.matcom.2021.12.007.
- B. S. He, A Class of Projection and Contraction Methods for Monotone Variational Inequalities, Appl. Math. Optim. 35 (1997), 69–76. https://doi.org/10.1007/BF02683320.
- A. Adamu, D. Kitkuan, P. Kumam, et al. Approximation Method for Monotone Inclusion Problems in Real Banach Spaces With Applications, J. Inequal. Appl. 2022 (2022), 70. https://doi.org/10.1186/s13660-022-02805-0.
- C. Diop, T.M.M. Sow, N. Djitte, et al. Constructive Techniques for Zeros of Monotone Mappings in Certain Banach Spaces, SpringerPlus 4 (2015), 383. https://doi.org/10.1186/s40064-015-1169-2.
- Y. Kimura, K. Nakajo, Strong Convergence for a Modified Forward-Backward Splitting Method in Banach Spaces, J. Nonlinear Var. Anal. 3 (2019), 5–18. https://doi.org/10.23952/jnva.3.2019.1.02.
- D. Kitkuan, P. Kumam, J. Martínez-Moreno, Generalized Halpern-type forward–backward splitting methods for convex minimization problems with application to image restoration problems, Optimization 69 (2019), 1557–1581. https://doi.org/10.1080/02331934.2019.1646742.
- G.B. Passty, Ergodic Convergence to a Zero of the Sum of Monotone Operators in Hilbert Space, J. Math. Anal. Appl. 72 (1979), 383–390. https://doi.org/10.1016/0022-247x(79)90234-8.
- P.L. Lions, B. Mercier, Splitting Algorithms for the Sum of Two Nonlinear Operators, SIAM J. Numer. Anal. 16 (1979), 964–979. https://doi.org/10.1137/0716071.
- G.H.G. Chen, R.T. Rockafellar, Convergence Rates in Forward–Backward Splitting, SIAM J. Optim. 7 (1997), 421– 444. https://doi.org/10.1137/s1052623495290179.
- D.A. Lorenz, T. Pock, An Inertial Forward-Backward Algorithm for Monotone Inclusions, J. Math. Imaging Vis. 51 (2014), 311–325. https://doi.org/10.1007/s10851-014-0523-2.
- W. Cholamjiak, P. Cholamjiak, S. Suantai, An Inertial Forward–backward Splitting Method for Solving Inclusion Problems in Hilbert Spaces, J. Fixed Point Theory Appl. 20 (2018), 42. https://doi.org/10.1007/s11784-018-0526-5.
- A. Adamu, J. Deepho, A.H. Ibrahim, et al. Approximation of Zeros of Sum of Monotone Mappings With Applications to Variational Inequality Problem and Image Processing, Nonlinear Funct. Anal. Appl. 26 (2021), 411–432. https://doi.org/10.22771/nfaa.2021.26.02.12.
- W. Takahashi, N.C. Wong, J.C. Yao, Two Generalized Strong Convergence Theorems of Halpern’s Type in Hilbert Spaces and Applications, Taiwan. J. Math. 16 (2012), 1151–1172. https://doi.org/10.11650/twjm/1500406684.
- D.V. Thong, P.T. Vuong, Modified Tseng’s Extragradient Methods for Solving Pseudo-Monotone Variational Inequalities, Optimization. 68 (2019), 2207–2226. https://doi.org/10.1080/02331934.2019.1616191.
- D. Kitkuan, P. Kumam, J. Martínez-Moreno, et al. Inertial Viscosity Forward–backward Splitting Algorithm for Monotone Inclusions and Its Application to Image Restoration Problems, Int. J. Comput. Math. 97 (2019), 482–497. https://doi.org/10.1080/00207160.2019.1649661.
- D.W. Peaceman, H.H. Rachford, Jr., The Numerical Solution of Parabolic and Elliptic Differential Equations, J. Soc. Ind. Appl. Math. 3 (1955), 28–41. https://www.jstor.org/stable/2098834.
- G.C. Ugwunnadi, L.Y. Haruna, M.H. Harbau, Accelerated Krasnoselski-Mann Type Algorithm for Hierarchical Fixed Point and Split Monotone Variational Inclusion Problems in Hilbert Spaces, Carpathian Math. Publ. 15 (2023), 158–179. https://doi.org/10.15330/cmp.15.1.158-179.