Numerical Identification of Boundary Condition for Reaction-Advection-Diffusion Partial Differential Equation

Main Article Content

Bader Saad Alshammari

Abstract

In this study, we consider a reaction-advection-diffusion partial differential equations (PDEs) in a plane domain with missed boundary data. We applied both the KMF algorithm and the conjugate gradient method to reconstruct the missed data by using the spectral element method. Several numerical examples were given illustrating the convergence of the used algorithms.

Article Details

References

  1. M. El Hajji, F. Jday, Boundary Data Completion for a Diffusion-Reaction Equation Based on the Minimization of an Energy Error Functional Using Conjugate Gradient Method, Punjab Univ. J. Math. 51 (2019), 25–43.
  2. M. Addouche, N. Bouarroudj, F. Jday, J. Henry, N. Zemzemi, Analysis of the ECGI Inverse Problem Solution with Respect to the Measurement Boundary Size and the Distribution of Noise, Math. Model. Nat. Phenom. 14 (2019), 203. https://doi.org/10.1051/mmnp/2018061.
  3. V.A. Kozlov, V.G. Maz’ya, A.V. Fomin, An Iterative Method for Solving the Cauchy Problem for Elliptic Equation, Comp. Math. Math. Phys. 31 (1991), 45–52.
  4. S. Sayari, A. Zaghdani, M. El Hajji, Analysis of HDG Method for the Reaction-Diffusion Equations, Appl. Numer. Math. 156 (2020), 396–409. https://doi.org/10.1016/j.apnum.2020.05.012.
  5. A. Zaghdani, S. Sayari, M. El Hajji, A New Hybridized Mixed Weak Galerkin Method for Second-Order Elliptic Problems, J. Comp. Math. 40 (2022), 499–516. https://doi.org/10.4208/jcm.2011-m2019-0142.
  6. H.W. Engl, A. Leitao, A Mann Iterative Regularization Method for Elliptic Cauchy Problems, Numer. Funct. Anal. Optim. 22 (2001), 861–884. https://doi.org/10.1081/NFA-100108313.
  7. M. Jourhmane, A. Nachaoui, An Alternating Method for an Inverse Cauchy Problem, Numer. Algor. 21 (1999), 247–260. https://doi.org/10.1023/A:1019134102565.
  8. D. Lesnic, L. Elliott, D.B. Ingham, An Iterative Boundary ElementMethod for Solving Numerically the Cauchy Problem for the Laplace Equation, Eng. Anal. Bound. Elements 20 (1997), 123–133. https://doi.org/10.1016/S0955-7997(97)00056-8.
  9. C. Tajani, J. Abouchabaka, O. Abdoun, KMF Algorithm for Solving the Cauchy Problem for Helmholtz Equation, Appl. Math. Sci. 6 (2006), 4577–4587.
  10. R.V. Kohn, M. Vogelius, Determining Conductivity by Boundary Measurements II. Interior Results, Commun. Pure Appl. Math. 38 (1985), 643–667. https://doi.org/10.1002/cpa.3160380513.
  11. B.S. Alshammari, D.S. Mashat, F.O. Mallawi, Mathematical and Numerical Investigations for a Cholera Dynamics With a Seasonal Environment, Int. J. Anal. Appl. 21 (2023), 127. https://doi.org/10.28924/2291-8639-21-2023-127.
  12. M. El Hajji, R.M. Alnjrani, Periodic Trajectories for HIV Dynamics in a Seasonal Environment With a General Incidence Rate, Int. J. Anal. Appl. 21 (2023), 96. https://doi.org/10.28924/2291-8639-21-2023-96.
  13. M. El Hajji, N.S. Alharbi, M.H. Alharbi, Mathematical Modeling for a CHIKV Transmission Under the Influence of Periodic Environment, Int. J. Anal. Appl. 22 (2024), 6. https://doi.org/10.28924/2291-8639-22-2024-6.
  14. M. El Hajji, M.F.S. Aloufi, M.H. Alharbi, Influence of Seasonality on Zika Virus Transmission, AIMS Math. 9 (2024), 19361–19384. https://doi.org/10.3934/math.2024943.
  15. M. El Hajji, A.Y. Al-Subhi, M.H. Alharbi, Mathematical Investigation for Two-Bacteria Competition in Presence of a Pathogen With Leachate Recirculation, Int. J. Anal. Appl. 22 (2024), 45. https://doi.org/10.28924/2291-8639-22-2024-45.
  16. M. El Hajji, F.A.S. Alzahrani, R. Mdimagh, Impact of Infection on Honeybee Population Dynamics in a Seasonal Environment, Int. J. Anal. Appl. 22 (2024), 75. https://doi.org/10.28924/2291-8639-22-2024-75.