A Note on Exact Frames in Banach Spaces

Main Article Content

B. Semthanga, Mina Kumari, Sandeep Kumari, Raksha Sharma

Abstract

In this article, we have defined µ-exact and finitely exact Banach frames and discuss their existence and relationship. A necessary condition for the existence of a µ-exact Banach frame is given. Also, we discuss quasi-complementary subspaces and prove a result using exact Banach frames. Finally, as an application, we discuss boundedness of an isometry using exact retro Banach frame sequences.

Article Details

References

  1. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/s0002-9947-1952-0047179-6.
  2. I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
  3. H.G. Feichtinger, K.H. Gröchenig, Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions, I, J. Funct. Anal. 86 (1989), 307–340. https://doi.org/10.1016/0022-1236(89)90055-4.
  4. K. Grochenig, Describing Functions: Atomic Decompositions Versus Frames, Monatsh. Math. 112 (1991), 1–42. https://doi.org/10.1007/bf01321715.
  5. P.G. Casazza, D. Han, D.R. Larson, Frames for Banach Spaces, Contemp. Math. 247 (1999), 149–182.
  6. P.A. Terekhin, Frames in Banach Spaces, Funct. Anal. Appl. 44 (2010), 199–208. https://doi.org/10.1007/s10688-010-0024-z.
  7. R.R. Coifman, G. Weiss, Extensions of Hardy Spaces and Their Use in Analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  8. P.K. Jain, S.K. Kaushik, L.K. Vashisht, On Banach Frames, Indian J. Pure Appl. Math. 37 (2006), 265–272.
  9. O. Christensen, An Introduction to Frames and Riesz Bases, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-25613-9.
  10. G. Verma, L.K. Vashisht, M. Singh, On Excess of Retro Banach Frames, J. Contemp. Math. Anal. 54 (2019), 143–146. https://doi.org/10.3103/S1068362319030026.
  11. N.N. Jha, S. Sharma, Block Sequences of Retro Banach Frames, Poincare J. Anal. Appl. 7 (2020), 267–274. https://doi.org/10.46753/pjaa.2020.v07i02.010.
  12. S.K. Kaushik, A Note on Exact Banach Frames, Int. J. Pure Appl. Math. 31 (2006), 279–286.
  13. S.K. Kaushik, L.K. Vashisht, G. Khattar, Reconstruction Property and Frames in Banach Spaces, Palestine J. Math. 3 (2014), 11–26.
  14. S.K. Kaushik, S.K. Sharma, K.T. Poumai, On Schauder Frames in Conjugate Banach Spaces, J. Math. 2013 (2013), 318659. https://doi.org/10.1155/2013/318659.
  15. P.K. Jain, S.K. Kaushik, L.K. Vashisht, On Perturbation of Banach Frames, Int. J. Wavelets Multiresolut. Inf. Process. 04 (2006), 559–565. https://doi.org/10.1142/s0219691306001440.
  16. P.K. Jain, S.K. Kaushik, L.K. Vashisht, Banach Frames for Conjugate Banach Spaces, Z. Anal. Anwend. 23 (2004), 713–720. https://doi.org/10.4171/zaa/1217.
  17. P.K. Jain, S.K. Kaushik, N. Gupta, on Near Exact Banach Frames in Banach Spaces, Bull. Austral. Math. Soc. 78 (2008), 335–342. https://doi.org/10.1017/s0004972708000889.
  18. P.K. Jain, S.K. Kaushik, N. Gupta, On Frame Systems in Banach Spaces, Int. J. Wavelets Multiresolut Inf. Process. 07 (2009), 1–7. https://doi.org/10.1142/s021969130900274x.