Theoretical and Numerical Study of Electrohydrodynamic Flow in a Planar, Cylindrical, and Spherical Conduit
Main Article Content
Abstract
This paper analyzes the mathematical model of electrohydrodynamic (EHD) fluid flow in a general conduit (planar, cylindrical and spherical) with an ion drag configuration. The phenomenon is modelled using a nonlinear differential equation. The velocity field is obtained by solving this nonlinear equation using two analytical methods. The effects of the Hartmann electric number and nonlinearity strength are discussed and presented graphically. Additionally, we compare this method with a numerical solution obtained using MATLAB, demonstrating that the proposed approaches are less computational intensive and more efficient for solving the underlined problem.
Article Details
References
- D.A. Saville, Electrohydrodynamics: The Taylor-Melcher Leaky Dielectric Model, Annu. Rev. Fluid Mech. 29 (1997), 27–64. https://doi.org/10.1146/annurev.fluid.29.1.27.
- G.I. Taylor, Disintegration of Water Drops in an Electric Field, Proc. R. Soc. London. Ser. A Math. Phys. Sci. 280 (1964), 383–397. https://doi.org/10.1098/rspa.1964.0151.
- J.M. Crowley, G.S. Wright, J.C. Chato, Selecting a Working Fluid to Increase the Efficiency and Flow Rate of an EHD Pump, IEEE Trans. Ind. Appl. 26 (1990), 42–49. https://doi.org/10.1109/28.52672.
- J. Seyed-Yagoobi, J.E. Bryan, J.A. Castaneda, Theoretical Analysis of Ion-Drag Pumping, IEEE Trans. Ind. Appl. 31 (1995), 469–476. https://doi.org/10.1109/28.382105.
- A.C. Eringen, G.A. Maugin, Electrodynamics of Continua I, Springer, New York, 1990. https://doi.org/10.1007/978-1-4612-3226-1.
- S.C. Kim, Y.N. Chun, CFD Modelling of Electrohydrodynamic Gas Flow in an Electrostatic Precipitator, Int. J. Environ. Pollut. 36 (2009), 337–349. https://doi.org/10.1504/ijep.2009.023661.
- P. Zamankhan, G. Ahmadi, F.G. Fan, Coupling Effects of the Flow and Electric Fields in Electrostatic Precipitators, J. Appl. Phys. 96 (2004), 7002–7010. https://doi.org/10.1063/1.1810201.
- M. Driouich, K. Gueraoui, M. Sammouda, Y.M. Haddad, I. Aberdane, The Effect of Electric Field on the Flow of a Compressible Ionized Fluid in a Cylindrical Tube, Adv. Stud. Theor. Phys. 6 (2012), 687–696.
- A.V. Chankin, D.P. Coster, N. Asakura, G. Corrigan, S.K. Erents, W. Fundamenski, H.W. Müller, R.A. Pitts, P.C. Stangeby, M. Wischmeier, A Possible Role of Radial Electric Field in Driving Parallel Ion Flow in Scrape-Off Layer of Divertor Tokamaks, Nuclear Fusion 47 (2007), 762–772. https://doi.org/10.1088/0029-5515/47/8/006.
- P. Balland, E. Süli, Analysis of the Cell-Vertex Finite Volume Method for Hyperbolic Problems with Variable Coefficients, SIAM J. Numer. Anal. 34 (1997), 1127–1151. https://doi.org/10.1137/s0036142994264882.
- A.A. Naqwi, R.P.A. Hartman, J.C.M. Marijnissen, Basic Studies of Electrohydrodynamic Atomization Process Using Phase Doppler Measurement Technique, Part. Part. Syst. Charact. 13 (1996), 143–149. https://doi.org/10.1002/ppsc.19960130213.
- P.J. Sides, Calculation of Electrohydrodynamic Flow around a Single Particle on an Electrode, Langmuir 19 (2003), 2745–2751. https://doi.org/10.1021/la026509k.
- H. Sugiyama, H. Ogura, Y. Otsubo, Fluid Devices by the Use of Electrohydrodynamic Effects of Water, J. Appl. Fluid Mech. 4 (2012), 27–33. https://doi.org/10.36884/jafm.4.01.11898.
- K. Edamura, Y. Otsubo, A Continuous Ink Jet Device on the Basis of Electrohydrodynamic Mechanism, J. Imaging Sci. Technol. 48 (2004), 148–152.
- D.R. Arifin, L.Y. Yeo, J.R. Friend, Microfluidic Blood Plasma Separation via Bulk Electrohydrodynamic Flows, Biomicrofluidics 1 (2007), 014103. https://doi.org/10.1063/1.2409629.
- M. Hou, W. Chen, T. Zhang, K. Lu, Electric Field Controlled Dilute–dense Flow Transition in Granular Flow Through a Vertical Pipe, Powder Technol. 135–136 (2003), 105–111. https://doi.org/10.1016/s0032-5910(03)00158-x.
- S. McKee, R. Watson, J.A. Cuminato, J. Caldwell, M.S. Chen, Calculation of Electrohydrodynamic Flow in a Circular Cylindrical Conduit, Z. Angew. Math. Mech. 77 (1997), 457–465. https://doi.org/10.1002/zamm.19970770612.
- J.E. Paullet, On the Solutions of Electrohydrodynamic Flow in a Circular Cylindrical Conduit, Z. Angew. Math. Mech. 79 (1999), 357–360. https://doi.org/10.1002/(sici)1521-4001(199905)79:53.0.co;2-b.
- A. Mastroberardino, Homotopy Analysis Method Applied to Electrohydrodynamic Flow, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 2730–2736. https://doi.org/10.1016/j.cnsns.2010.10.004.
- E. Hosseini, G. Barid Loghmani, M. Heydari, A.M. Wazwaz, A Numerical Study of Electrohydrodynamic Flow Analysis in a Circular Cylindrical Conduit Using Orthonormal Bernstein Polynomials, Comp. Meth. Diff. Equ. 5 (2017), 280–300.
- N.A. Khan, M. Jamil, A. Mahmood, A. Ara, Approximate Solution for the Electrohydrodynamic Flow in a Circular Cylindrical Conduit, ISRN Comp. Math. 2012 (2012), 341069. https://doi.org/10.5402/2012/341069.
- M. Moghtadaei, H. Saberi Nik, S. Abbasbandy, A Spectral Method for the Electrohydrodynamic Flow in a Circular Cylindrical Conduit, Chinese Ann. Math. Ser. B 36 (2015), 307–322. https://doi.org/10.1007/s11401-015-0882-z.
- P. Roul, H. Madduri, A New Approximate Method and Its Convergence for a Strongly Nonlinear Problem Governing Electrohydrodynamic Flow of a Fluid in a Circular Cylindrical Conduit, Appl. Math. Comp. 341 (2019), 335–347. https://doi.org/10.1016/j.amc.2018.09.010.
- P. Roul, H. Madduri, K. Kassner, A Sixth-Order Numerical Method for a Strongly Nonlinear Singular Boundary Value Problem Governing Electrohydrodynamic Flow in a Circular Cylindrical Conduit, Appl. Math. Comp. 350 (2019), 416–433. https://doi.org/10.1016/j.amc.2018.12.070.
- R.H. Gavabari, M. Abbasi, D.D. Ganji, I. Rahimipetroudi, A. Bozorgi, Application of Galerkin and Collocation Method to the Electrohydrodynamic Flow Analysis in a Circular Cylindrical Conduit, J. Braz. Soc. Mech. Sci. Eng. 38 (2015), 2327–2332. https://doi.org/10.1007/s40430-014-0283-3.
- M. Abukhaled, S.A. Khuri, A Fast Convergent Semi-Analytic Method for an Electrohydrodynamic Flow in a Circular Cylindrical Conduit, Int. J. Appl. Comp. Math. 7 (2021), 32. https://doi.org/10.1007/s40819-021-00974-y.
- S.E. Ghasemi, M. Hatami, GH.R. Mehdizadeh Ahangar, D.D. Ganji, Electrohydrodynamic Flow Analysis in a Circular Cylindrical Conduit Using Least Square Method, J. Electrostat. 72 (2014), 47–52. https://doi.org/10.1016/j.elstat.2013.11.005.
- C. Margerison-Zilko, S. Goldman-Mellor, A. Falconi, J. Downing, Health Impacts of the Great Recession: a Critical Review, Curr. Epidemiol. Rep. 3 (2016), 81–91. https://doi.org/10.1007/s40471-016-0068-6.
- P. Roul, A Fourth-Order Non-Uniform Mesh Optimal B-Spline Collocation Method for Solving a Strongly Nonlinear Singular Boundary Value Problem Describing Electrohydrodynamic Flow of a Fluid, Appl. Numer.Math. 153 (2020), 558–574. https://doi.org/10.1016/j.apnum.2020.03.018.
- P. Roul, V.M.K. Prasad Goura, K. Kassner, A High Accuracy Numerical Approach for Electro-Hydrodynamic Flow of a Fluid in an Ion-Drag Configuration in a Circular Cylindrical Conduit, Appl. Numer. Math. 165 (2021), 303–321. https://doi.org/10.1016/j.apnum.2021.02.011.
- P. Roul, H. Madduri, K. Kassner, A New Iterative Algorithm for a Strongly Nonlinear Singular Boundary Value Problem, J. Comp. Appl. Math. 351 (2019), 167–178. https://doi.org/10.1016/j.cam.2018.10.043.
- D. Rostamy, K. Karimi, F. Zabihi, M. Alipour, Numerical Solution of Electrodynamic Flow by Using Pseudo-Spectral Collocation Method, Vietnam J. Math. 41 (2013), 43–49. https://doi.org/10.1007/s10013-013-0007-5.
- O.A. Bég, M. Hameed, T.A. Bég, Chebyshev Spectral Collocation Simulation of Nonlinear Boundary Value Problems in Electrohydrodynamics, Int. J. Comp. Meth. Eng. Sci. Mech. 14 (2013), 104–115. https://doi.org/10.1080/15502287.2012.698707.
- N.S. Akbar, M. Raza, R. Ellahi, Anti-Bacterial Applications for New Thermal Conductivity Model in Arteries With Cnt Suspended Nanofluid, J. Mech. Med. Biol. 16 (2016), 1650063. https://doi.org/10.1142/s0219519416500639.
- N.A. Khan, M. Sulaiman, C.A. Tavera Romero, F.K. Alarfaj, Numerical Analysis of Electrohydrodynamic Flow in a Circular Cylindrical Conduit by Using Neuro Evolutionary Technique, Energies 14 (2021), 7774. https://doi.org/10.3390/en14227774.
- M.R. Akbari, D.D. Ganji, A. Majidian, A.R. Ahmadi, Solving nonlinear differential equations of Vanderpol, Rayleigh and Duffing by AGM, Front. Mech. Eng. 9 (2014), 177–190. https://doi.org/10.1007/s11465-014-0288-8.
- M. Menaka, P. Jeyabarathi, R. Manimaran, L. Rajendran, Nonlinear Transport and Kinetics in Electrocatalytic Thin Film of Arbitrary Shape for Non-Michaelis-Menten Reaction Kinetics, J. Electroanal. Chem. 962 (2024), 118273. https://doi.org/10.1016/j.jelechem.2024.118273.
- P. Jeyabarathi, L. Rajendran, M. Abukhaled, M.E.G. Lyons, M. Kannan, Steady-State Catalytic Current of Bioelectrocatalysis Using Akbari-Ganji’s Method, Int. J. Electrochem. Sci. 17 (2022), 22093. https://doi.org/10.20964/2022.09.37.
- P. Jeyabarathi, L. Rajendran, M.E.G. Lyons, M. Abukhaled, Theoretical Analysis of Mass Transfer Behavior in Fixed-Bed Electrochemical Reactors: Akbari-Ganji’s Method, Electrochem 3 (2022), 699–712. https://doi.org/10.3390/electrochem3040046.
- R. Shanthi, M. Chitra Devi, M. Abukhaled, M.E.G. Lyons, L. Rajendran, Mathematical Modeling of pH-Based Potentiometric Biosensor Using Akbari-Ganji Method, Int. J. Electrochem. Sci. 17 (2022), 220349. https://doi.org/10.20964/2022.03.48.
- J.-S. Duan, R. Rach, A New Modification of the Adomian Decomposition Method for Solving Boundary Value Problems for Higher Order Nonlinear Differential Equations, Appl. Math. Comp. 218 (2011), 4090–4118. https://doi.org/10.1016/j.amc.2011.09.037.
- A.M. Wazwaz, A Reliable Modification of Adomian Decomposition Method, Appl. Math. Comp. 102 (1999), 77–86. https://doi.org/10.1016/s0096-3003(98)10024-3.
- P. Jeyabarathi, M. Kannan, L. Rajendran, Approximate Analytical Solutions of Biofilm Reactor Problem in Applied Biotechnology, Theor. Found. Chem. Eng. 55 (2021), 851–861. https://doi.org/10.1134/s0040579521050213.