Legendre Polynomials and Techniques for Collocation in the Computation of Variable-Order Fractional Advection-Dispersion Equations
Main Article Content
Abstract
The paper discusses a numerical approach to solving complicated partial differential equations, with a particular emphasis on fractional advection-dispersion equations of space-time variable order. With the use of fractional derivative matrices, Legendre polynomials, and numerical examples and comparisons, it surpasses current methods by utilizing spectral collocation techniques. It resolves equations involving spatial and time variables that are variable-order fractional advection–dispersion (VOFADE). Legendre polynomials serve as basis functions in this method, whereas Legendre operational matrices are employed for fractional derivatives. The technique is more computationally efficient since it reduces fractional advection–dispersion equations to systems of algebraic equations. Numerical examples and a comparison with current approaches illustrate the method’s superior performance in solving complicated partial differential equations, especially in the context of transport processes.
Article Details
References
- R.O. Ogbumba, M.S. Shagari, M. Alansari, T.A. Khalid, E.A.E. Mohamed, A.A. Bakery, Advancements in Hybrid Fixed Point Results and F-Contractive Operators, Symmetry 15 (2023), 1253. https://doi.org/10.3390/sym15061253.
- A. Bhrawy, M. Zaky, J. Tenreiro Machado, Efficient Legendre Spectral Tau Algorithm for Solving the Two-Sided Space-Time Caputo Fractional Advection-Dispersion Equation, J. Vib. Control 22 (2015), 2053–2068. https://doi.org/10.1177/1077546314566835.
- A.H. Bhrawy, D. Baleanu, A Spectral Legendre-Gauss-Lobatto Collocation Method for a Space-Fractional Advection Diffusion Equations with Variable Coefficients, Rep. Math. Phys. 72 (2013), 219–233. https://doi.org/10.1016/s0034-4877(14)60015-x.
- H. Du, Z. Chen, Adaptive Meshless Numerical Method of Solving 2D Variable Order Time Fractional MobileImmobile Advection-Diffusion Equations, Comp. Math. Appl. 124 (2022), 42–51. https://doi.org/10.1016/j.camwa.2022.08.003.
- M. Hosseininia, M.H. Heydari, Z. Avazzadeh, F.M. Maalek Ghaini, Two-Dimensional Legendre Wavelets for Solving Variable-Order Fractional Nonlinear Advection-Diffusion Equation with Variable Coefficients, Int. J. Nonlinear Sci. Numer. Simul. 19 (2018), 793–802. https://doi.org/10.1515/ijnsns-2018-0168.
- W. Jiang, H. Li, A Space-time Spectral Collocation Method for the Two-Dimensional Variable-Order Fractional Percolation Equations, Comp. Math. Appl. 75 (2018), 3508–3520. https://doi.org/10.1016/j.camwa.2018.02.013.
- F. Mallawi, J.F. Alzaidy, R.M. Hafez, Application of a Legendre Collocation Method to the Space-Time Variable Fractional-Order Advection-Dispersion Equation, J. Taibah Univ. Sci. 13 (2019), 324–330. https://doi.org/10.1080/16583655.2019.1576265.
- A. Saadatmandi, M. Dehghan, M.R. Azizi, The Sinc–legendre Collocation Method for a Class of Fractional Convection–diffusion Equations With Variable Coefficients, Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 4125–4136. https://doi.org/10.1016/j.cnsns.2012.03.003.
- A. Singh, S. Das, Study and Analysis of Spatial-Time Nonlinear Fractional-Order Reaction-Advection-Diffusion Equation, J. Por. Media 22 (2019), 787–798. https://doi.org/10.1615/jpormedia.2019025907.
- A. Saadatmandi, M. Dehghan, M.R. Azizi, The Sinc-legendre Collocation Method for a Class of Fractional Convection–diffusion Equations With Variable Coefficients, Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 4125–4136. https://doi.org/10.1016/j.cnsns.2012.03.003.
- T. Hamadneh, A. Hioual, R. Saadeh, M.A. Abdoon, D.K. Almutairi, T.A. Khalid, A. Ouannas, General Methods to Synchronize Fractional Discrete Reaction–Diffusion Systems Applied to the Glycolysis Model, Fractal Fract. 7 (2023), 828. https://doi.org/10.3390/fractalfract7110828.
- S. Rashid, A. Khalid, S. Sultana, F. Jarad, K.M. Abualnaja, Y.S. Hamed, Novel Numerical Investigation of the Fractional Oncolytic Effectiveness Model With M1 Virus via Generalized Fractional Derivative With Optimal Criterion, Results Phys. 37 (2022), 105553. https://doi.org/10.1016/j.rinp.2022.105553.
- A. Saadatmandi, Bernstein Operational Matrix of Fractional Derivatives and Its Applications, Appl. Math. Model. 38 (2014), 1365–1372. https://doi.org/10.1016/j.apm.2013.08.007.
- S. Kazem, S. Abbasbandy, S. Kumar, Fractional-Order Legendre Functions for Solving Fractional-Order Differential Equations, Appl. Math. Model. 37 (2013), 5498–5510. https://doi.org/10.1016/j.apm.2012.10.026.
- D.W. Brzezi ´nski, Review of Numerical Methods for NumILPT with Computational Accuracy Assessment for Fractional Calculus, Appl. Math. Nonlinear Sci. 3 (2018), 487–502. https://doi.org/10.2478/amns.2018.2.00038.
- E. ˙Ilhan, ˙I.O. Kıymaz, A Generalization of Truncated M-Fractional Derivative and Applications to Fractional Differential Equations, Appl. Math. Nonlinear Sci. 5 (2020), 171–188. https://doi.org/10.2478/amns.2020.1.00016.
- A.H. Bhrawy, M.A. Zaky, D. Baleanu, New Numerical Approximations for Space-Time Fractional Burgers’ Equations via a Legendre Spectral-Collocation Method, Romanian Rep. Phys. 67 (2015), 340–349.
- C. Lederman, J.M. Roquejoffre, N.Wolanski, Mathematical Justification of a Nonlinear Integro-Differential Equation for the Propagation of Spherical Flames, Ann. Mat. Pura Appl. IV. Ser. 183 (2004), 173–239. https://doi.org/10.1007/s10231-003-0085-1.
- F.O. Alnoor, T.A. Khalid, A Short Note on a Technique for Solving Mixing Problems by Using the Laplace Transform, TechHub J. 1 (2021), 1–5.
- T.A. Khalid, A. Imam, A. Bahatheg, S.A. Elsamani, B. ElMukhtar, A Fractional EpidemiologicalModel for Prediction and Simulation the Outbreaks of Dengue Fever Outbreaks in Sudan, J. Surv. Fish. Sci. 10 (2023), 2679–2692.
- S. Yaghoobi, B.P. Moghaddam, K. Ivaz, An Efficient Cubic Spline Approximation for Variable-Order Fractional Differential Equations With Time Delay, Nonlinear Dyn. 87 (2016), 815–826. https://doi.org/10.1007/s11071-016-3079-4.
- F. Alshammari, A. Mustafa, E. Omer, F. Omer, A simulation Model of COVID-19 Epidemic Based on Vaccination and Treatment, Eur. J. Pure Appl. Math. 16 (2023), 2450–2460. https://doi.org/10.29020/nybg.ejpam.v16i4.4805.
- F.O. Alnoor, A Note on Norm Attaining Operators, IOSR J. Math. 14 (2018), 78–80.
- C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, J.H.T. Bates, The Role of Fractional Calculus in Modeling Biological Phenomena: A Review, Comm. Nonlinear Sci. Numer. Simul. 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001.
- D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012. https://doi.org/10.1142/10044.
- P.L. Butzer, U. Westphal, An Introduction to Fractional Calculus, in: Applications of Fractional Calculus in Physics, World Scientific, 2000: pp. 1–85. https://doi.org/10.1142/9789812817747_0001.
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, 2000. https://doi.org/10.1142/3779.