A Novel Approach for Time-Local Fractional Solutions of Certain Nonlinear Partial Differential Equations in Fractal Dimension

Main Article Content

M. Jneid, M. Daher, M. Awad, S. Marhaba

Abstract

Time-local fractional approaches for nonlinear partial differential equations in fractal dimensions are essential for capturing the complex, irregular behaviors found in fractal systems. In this paper, a new modification of the local fractional Laplace variational iteration method (MLFLVIM) for obtaining analytical approximate solutions to the fractional gas dynamics equation, fractional Stefan equation, and fractional Newell-Whitehead-Segel equation within the context of fractal time space is presented. The proposed method (MLFLVIM) elegantly combines the local fractional Laplace transform (LFLT) with modified variational iteration method. Specifically, we first apply the (LFLT) to the given local fractional PDEs, yielding a transformed system of equations. We then apply modified variational iteration to this system. Finally, we use the inverse of (LFLT) to obtain the desired solution. To demonstrate the effectiveness of this approach, we implement it on three numerical physical problems. The results show that the (MLFLVIM) can successfully handle these nonlinear LFPDEs and provide accurate analytical approximation solutions.

Article Details

References

  1. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, 2010. https://doi.org/10.1142/p614.
  2. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993. https://cir.nii.ac.jp/crid/1130282270123129216.
  3. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, 1998.
  4. A. Carpinteri, P. Cornetti, A. Sapora, Nonlocal Elasticity: An Approach Based on Fractional Calculus, Meccanica 49 (2014), 2551–2569. https://doi.org/10.1007/s11012-014-0044-5.
  5. S. Seddighi Chaharborj, S. Seddighi Chaharborj, Z. Seddighi Chaharborj, P.S. Phang, Theoretical Fractional Formulation of a Three-Dimensional Radio Frequency Ion Trap (Paul-Trap) for Optimum Mass Separation, Eur. J. Mass Spectrometry 27 (2021), 73–83. https://doi.org/10.1177/14690667211026790.
  6. Y.M. Chu, M. Jneid, A. Chaouk, M. Inc, H. Rezazadeh, A. Houwe, Local Time Fractional Reduced Differential Transform Method for Solving Local Time Fractional Telegraph Equations, Fractals 32 (2024), 2340128. https://doi.org/10.1142/S0218348X2340128X.
  7. A. Chaouk, M. Jneid, Analytic Solution for Systems of Two-Dimensional Time Conformable Fractional PDEs by Using CFRDTM, Int. J. Math. Math. Sci. 2019 (2019), 7869516. https://doi.org/10.1155/2019/7869516.
  8. K. Abuasbeh, M. Awadalla, M. Jneid, Nonlinear Hadamard Fractional Boundary Value Problems with Different Orders, Rocky Mt. J. Math. 51 (2021), 17–29. https://doi.org/10.1216/rmj.2021.51.17.
  9. M. Jneid, A. Chaouk, The Conformable Reduced Differential Transform Method for Solving Newell-WhiteheadSegel Equation With Non-Integer Order, J. Anal. Appl. 18 (2020) 35–51.
  10. M. Jneid, New Conformable Fractional HPT for Solving Systems of Linear and Nonlinear Conformable Fractional PDEs, Italian J. Pure Appl. Math. 48 (2022), 1242–1253.
  11. M. Jneid, A.E. Chakik, Analytical Solution for Some Systems of Nonlinear Conformable Fractional Differential Equations, Far East J. Math. Sci. 109 (2018), 243–259. https://doi.org/10.17654/MS109020243.
  12. M. Jneid, M. Awadalla, On the Controllability of Conformable Fractional Deterministic Control Systems in Finite Dimensional Spaces, Int. J. Math. Math. Sci. 2020 (2020), 9026973. https://doi.org/10.1155/2020/9026973.
  13. M. Jneid, A. Chaouk, Recent Advancement on Analytical Solution for Linear and Nonlinear Systems of Partial Differential Equations Involving Time Conformable Fractional Derivatives, in: Theory and Applications of Mathematical Sciences, Book Publisher International, 2020.
  14. M. Jneid, Exact Controllability of Semilinear Control Systems Involving Conformable Fractional Derivatives, AIP Conf. Proc. 2159 (2019), 030017. https://doi.org/10.1063/1.5127482.
  15. L. Akinyemi, M. ¸Senol, S.N. Huseen, Modified Homotopy Methods for Generalized Fractional Perturbed ZakharovKuznetsov Equation in Dusty Plasma, Adv. Differ. Equ. 2021 (2021), 45. https://doi.org/10.1186/s13662-020-03208-5.
  16. M. Jneid, The Fractional Annihilator Technique for Solving Nonhomogeneous Fractional Linear Differential Equations, Int. J. Math. Anal. 12 (2018), 61–70. https://doi.org/10.12988/ijma.2018.712157.
  17. L. Akinyemi, O.S. Iyiola, Analytical Study of (3 + 1)-Dimensional Fractional-Reaction Diffusion Trimolecular Models, Int. J. Appl. Comput. Math. 7 (2021), 92. https://doi.org/10.1007/s40819-021-01039-w.
  18. M. Jneid, Solving Newell-Whitehead-Segel, Stefan and Nonlinear Gas Dynamics Equations via Modified Laplace Variational Iteration Technique, AIP Conf. Proc. 3051 (2024), 080003. https://doi.org/10.1063/5.0191598.
  19. A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, 2004.
  20. M. Rasulov, T. Karaguler, Finite Difference Schemes for Solving System Equations of Gas Dynamic in a Class of Discontinuous Functions, Appl. Math. Comput. 143 (2003), 145–164. https://doi.org/10.1016/S0096-3003(02)00353-3.
  21. H. Aminikhah, A. Jamalian, Numerical Approximation for Nonlinear Gas Dynamic Equation, Int. J. Part. Differ. Equ. 2013 (2013), 846749. https://doi.org/10.1155/2013/846749.
  22. H.C. Rosu, O. Cornejo-Pérez, Supersymmetric Pairing of Kinks for Polynomial Nonlinearities, Phys. Rev. E. 71 (2005), 046607. https://doi.org/10.1103/PhysRevE.71.046607.
  23. D.A. Tarzia, Explicit and Approximated Solutions for Heat and Mass Transfer Problems With a Moving Interface, in: M. El-Amin (Ed.), Advanced Topics in Mass Transfer, InTech Open Access Publisher, Rijeka, 439-484, (2011).
  24. A. Sen, S. Tiwari, S. Mishra, P. Kaw, Nonlinear Wave Excitations by Orbiting Charged Space Debris Objects, Adv. Space Res. 56 (2015), 429–435. https://doi.org/10.1016/j.asr.2015.03.021.
  25. J. Tamang, K. Sarkar, A. Saha, Solitary Wave Solution and Dynamic Transition of Dust Ion Acoustic Waves in a Collisional Nonextensive Dusty Plasma with Ionization Effect, Physica A: Stat. Mech. Appl. 505 (2018), 18–34. https://doi.org/10.1016/j.physa.2018.02.213.
  26. M.J. Huntul, D. Lesnic, An Inverse Problem of Finding the Time-Dependent Thermal Conductivity from Boundary Data, Int. Commun. Heat Mass Transfer 85 (2017), 147–154. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.009.
  27. X.J. Yang, D. Baleanu, H.M. Srivastava, Local Fractional Integral Transforms and their Applications, Academic Press, pp. 1–55, 2016.
  28. X.J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, 2012.
  29. R. Ezzati, K. Shakibi, Using Adomian’s Decomposition and Multiquadric Quasi-Interpolation Methods for Solving Newell–Whitehead Equation, Procedia Computer Sci. 3 (2011), 1043–1048. https://doi.org/10.1016/j.procs.2010.12.171.
  30. N.G. Burago, A.I. Fedyushkin, Numerical Solution of the Stefan Problem, J. Phys.: Conf. Ser. 1809 (2021), 012002. https://doi.org/10.1088/1742-6596/1809/1/012002.
  31. J. Matlak, D. Slota, Solution of the Stefan Problem by Involving the Material Shrinkage, Techn. Trans. Mech. 2-M (2015), 157–164.
  32. M. Tatari, M. Dehghan, On the Convergence of He’s Variational Iteration Method, J. Comput. Appl. Math. 207 (2007), 121–128. https://doi.org/10.1016/j.cam.2006.07.017.