Approximating Fixed Point of (α, β, γ)-Nonexpansive Mapping Using Picard-Thakur Iterative Scheme

Main Article Content

Maha Noorwali, Kifayat Ullah, Hayat Ullah, Muhammad Arif, Bashir Nawaz

Abstract

In this paper, we explore the fixed point approximation of (α, β, γ)–nonexpansive mappings using the Picard-Thakur iterative scheme. We identify the efficiency of Picard-Thakur iterative scheme through a numerical example by comparing it with other iterative schemes. We also proved strong and weak fixed point convergence theorems for (α, β, γ)–nonexpansive mappings by using Picard-Thakur iterative scheme.

Article Details

References

  1. M. Abbas, T. Nazir, A New Faster Iteration Process Applied to Constrained Minimization and Feasibility Problems, Math. Vesnik, 66 (2014), 223–234. http://hdl.handle.net/2263/43663.
  2. D.R. Sahu, D. O’Regan, R.P. Agarwal, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-75818-3.
  3. R.P. Agarwal, D. O’Regon, D.R. Sahu, Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings, J. Nonlinear Convex Anal. 8 (2007), 61–79.
  4. K. Aoyama, F. Kohsaka, Fixed Point Theorem for -Nonexpansive Mappings in Banach Spaces, Nonlinear Anal.: Theory, Meth. Appl. 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057.
  5. S. Banach, Sur les Opérations dans les Ensembles Abstraits et leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  6. F.E. Browder, Nonexpansive Nonlinear Operators in a Banach Space, Proc. Natl. Acad. Sci. U.S.A. 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041.
  7. J.A. Clarkson, Uniformly Convex Spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. https://doi.org/10.2307/1989630.
  8. D. Göhde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312.
  9. S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147–150. https://doi.org/10.1090/s0002-9939-1974-0336469-5.
  10. J. Jia, K. Shabbir, K. Ahmad, N.A. Shah, T. Botmart, Strong Convergence of a New Hybrid Iterative Scheme for Nonexpensive Mappings and Applications, J. Function Spaces 2022 (2022), 4855173. https://doi.org/10.1155/2022/4855173.
  11. E. Karapınar, T. Abdeljawad, F. Jarad, Applying New Fixed Point Theorems on Fractional and Ordinary Differential Equations, Adv. Diff. Equ. 2019 (2019), 421. https://doi.org/10.1186/s13662-019-2354-3.
  12. E. Karapınar, K. Tas, Generalized (C)-Conditions and Related Fixed Point Theorems, Comp. Math. Appl. 61 (2011), 3370–3380. https://doi.org/10.1016/j.camwa.2011.04.035.
  13. S. Khatoon, I. Uddin, D. Baleanu, Approximation of Fixed Point and Its Application to Fractional Differential Equation, J. Appl. Math. Comp. 66 (2021), 507–525. https://doi.org/10.1007/s12190-020-01445-1.
  14. W.A. Kirk, A Fixed Point Theorem for Mappings which do not Increase Distances, Amer. Math. Mon. 72 (1965), 1004–1006. https://doi.org/10.2307/2313345.
  15. W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. https://doi.org/10.1090/s0002-9939-1953-0054846-3.
  16. M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042.
  17. Z. Opial, Weak and Strong Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
  18. É. Picard, Mémoire sur la Théorie des Équations aux Dérivées Partielles et la Méthode des Approximations Successives, J. Math. Pures Appl. 6 (1890), 145–210.
  19. J. Schu, Weak and Strong Convergence to Fixed Points of Asymptotically Nonexpansive Mappings, Bull. Austral. Math. Soc. 43 (1991), 153–159. https://doi.org/10.1017/s0004972700028884.
  20. H.F. Senter, W.G. Dotson, Approximating Fixed Points of Nonexpansive Mappings, Proc. Amer. Math. Soc. 44 (1974), 375–380. https://doi.org/10.1090/s0002-9939-1974-0346608-8.
  21. H.F. Senter, W.G. Dotson, Approximating Fixed Points of Nonexpansive Mappings, Proc. Amer. Math. Soc. 44 (1974), 375–380. https://doi.org/10.1090/s0002-9939-1974-0346608-8.
  22. T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.
  23. W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama, 2000.
  24. B.S. Thakur, D. Thakur, M. Postolache, A New Iterative Scheme for Numerical Reckoning Fixed Points of Suzuki’s Generalized Nonexpansive Mappings, Appl. Math. Comp. 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065.
  25. K. Ullah, J. Ahmed, A New Results of Nonlinear Operators and Convergence Results via Faster Iteration Process, Preprint.
  26. K. Ullah, M. Arshad, Numerical Reckoning Fixed Points for Suzuki’s Generalized Nonexpansive Mappings via New Iteration Process, Filomat 32 (2018), 187–196. https://doi.org/10.2298/fil1801187u.
  27. K. Ullah, J. Ahmad, M. de la Sen, On Generalized Nonexpansive Maps in Banach Spaces, Computation 8 (2020), 61. https://doi.org/10.3390/computation8030061.
  28. B. Nawaz, K. Ullah, K. Gdawiec, Convergence Analysis of Picard-SP Iteration Process for Generalized αNonexpansive Mappings, Numer. Algor. (2024). https://doi.org/10.1007/s11075-024-01859-z.