Approximating Fixed Point of (α, β, γ)-Nonexpansive Mapping Using Picard-Thakur Iterative Scheme
Main Article Content
Abstract
In this paper, we explore the fixed point approximation of (α, β, γ)–nonexpansive mappings using the Picard-Thakur iterative scheme. We identify the efficiency of Picard-Thakur iterative scheme through a numerical example by comparing it with other iterative schemes. We also proved strong and weak fixed point convergence theorems for (α, β, γ)–nonexpansive mappings by using Picard-Thakur iterative scheme.
Article Details
References
- M. Abbas, T. Nazir, A New Faster Iteration Process Applied to Constrained Minimization and Feasibility Problems, Math. Vesnik, 66 (2014), 223–234. http://hdl.handle.net/2263/43663.
- D.R. Sahu, D. O’Regan, R.P. Agarwal, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-75818-3.
- R.P. Agarwal, D. O’Regon, D.R. Sahu, Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings, J. Nonlinear Convex Anal. 8 (2007), 61–79.
- K. Aoyama, F. Kohsaka, Fixed Point Theorem for -Nonexpansive Mappings in Banach Spaces, Nonlinear Anal.: Theory, Meth. Appl. 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057.
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- F.E. Browder, Nonexpansive Nonlinear Operators in a Banach Space, Proc. Natl. Acad. Sci. U.S.A. 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041.
- J.A. Clarkson, Uniformly Convex Spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. https://doi.org/10.2307/1989630.
- D. Göhde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312.
- S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147–150. https://doi.org/10.1090/s0002-9939-1974-0336469-5.
- J. Jia, K. Shabbir, K. Ahmad, N.A. Shah, T. Botmart, Strong Convergence of a New Hybrid Iterative Scheme for Nonexpensive Mappings and Applications, J. Function Spaces 2022 (2022), 4855173. https://doi.org/10.1155/2022/4855173.
- E. Karapınar, T. Abdeljawad, F. Jarad, Applying New Fixed Point Theorems on Fractional and Ordinary Differential Equations, Adv. Diff. Equ. 2019 (2019), 421. https://doi.org/10.1186/s13662-019-2354-3.
- E. Karapınar, K. Tas, Generalized (C)-Conditions and Related Fixed Point Theorems, Comp. Math. Appl. 61 (2011), 3370–3380. https://doi.org/10.1016/j.camwa.2011.04.035.
- S. Khatoon, I. Uddin, D. Baleanu, Approximation of Fixed Point and Its Application to Fractional Differential Equation, J. Appl. Math. Comp. 66 (2021), 507–525. https://doi.org/10.1007/s12190-020-01445-1.
- W.A. Kirk, A Fixed Point Theorem for Mappings which do not Increase Distances, Amer. Math. Mon. 72 (1965), 1004–1006. https://doi.org/10.2307/2313345.
- W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. https://doi.org/10.1090/s0002-9939-1953-0054846-3.
- M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042.
- Z. Opial, Weak and Strong Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- É. Picard, Mémoire sur la Théorie des Équations aux Dérivées Partielles et la Méthode des Approximations Successives, J. Math. Pures Appl. 6 (1890), 145–210.
- J. Schu, Weak and Strong Convergence to Fixed Points of Asymptotically Nonexpansive Mappings, Bull. Austral. Math. Soc. 43 (1991), 153–159. https://doi.org/10.1017/s0004972700028884.
- H.F. Senter, W.G. Dotson, Approximating Fixed Points of Nonexpansive Mappings, Proc. Amer. Math. Soc. 44 (1974), 375–380. https://doi.org/10.1090/s0002-9939-1974-0346608-8.
- H.F. Senter, W.G. Dotson, Approximating Fixed Points of Nonexpansive Mappings, Proc. Amer. Math. Soc. 44 (1974), 375–380. https://doi.org/10.1090/s0002-9939-1974-0346608-8.
- T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.
- W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama, 2000.
- B.S. Thakur, D. Thakur, M. Postolache, A New Iterative Scheme for Numerical Reckoning Fixed Points of Suzuki’s Generalized Nonexpansive Mappings, Appl. Math. Comp. 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065.
- K. Ullah, J. Ahmed, A New Results of Nonlinear Operators and Convergence Results via Faster Iteration Process, Preprint.
- K. Ullah, M. Arshad, Numerical Reckoning Fixed Points for Suzuki’s Generalized Nonexpansive Mappings via New Iteration Process, Filomat 32 (2018), 187–196. https://doi.org/10.2298/fil1801187u.
- K. Ullah, J. Ahmad, M. de la Sen, On Generalized Nonexpansive Maps in Banach Spaces, Computation 8 (2020), 61. https://doi.org/10.3390/computation8030061.
- B. Nawaz, K. Ullah, K. Gdawiec, Convergence Analysis of Picard-SP Iteration Process for Generalized αNonexpansive Mappings, Numer. Algor. (2024). https://doi.org/10.1007/s11075-024-01859-z.