Approximating Fixed Point of (α, β, γ)-Nonexpansive Mappings Using JK Iterative Scheme
Main Article Content
Abstract
In this manuscript, we analyze the fixed point approximation of (α, β, γ)-nonexpansive mappings using the JK iteration scheme. To evaluate its efficiency, we perform a comparative analysis with other iterative schemes for (α, β, γ)-nonexpansive mappings. Additionally, we establish the convergence results for sequence generated by the JK iterative scheme. Our work generalizes several results from the existing literature.
Article Details
References
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- E. Picard, Mémoire sur la Théorie des Équations aux Dérivées Partielles et la Méthode des Approximations Successives, J. Math. Pures Appl. 6 (1890), 145–210.
- F.E. Browder, Nonexpansive Nonlinear Operators in a Banach Space, Proc. Nat. Acad. Sci. 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041.
- D. Göhde, Zum Prinzip Der Kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312.
- T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.
- K. Aoyama, F. Kohsaka, Fixed Point Theorem for α-Nonexpansive Mappings in Banach Spaces, Nonlinear Anal.: Theory Methods Appl. 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057.
- K. Ullah, J. Ahmad, H.A. Hammad, R. George, Iterative Schemes for Numerical Reckoning of Fixed Points of New Nonexpansive Mappings with an Application, AIMS Math. 8 (2023), 10711–10727. https://doi.org/10.3934/math.2023543.
- R. Agarwal, D. O’Regan, D. Sahu, Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings, J. Nonlinear Convex Anal. 8 (2007), 61–79.
- J. Ahmad, K. Ullah, M. Arshad, Z. Ma, A New Iterative Method for Suzuki Mappings in Banach Spaces, J. Math. 2021 (2021), 6622931. https://doi.org/10.1155/2021/6622931.
- B. Nawaz, K. Ullah, K. Gdawiec, Convergence Analysis of a Picard-CR Iteration Process for Nonexpensive Mappings, Soft Comput. in Press.
- B. Nawaz, K. Ullah, K. Gdawiec, Convergence Analysis of Picard–SP Iteration Process for Generalized α–Nonexpansive Mappings, Numer. Algorithms (2024). https://doi.org/10.1007/s11075-024-01859-z.
- M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042.
- K. Ullah, M. Arshad, Numerical Reckoning Fixed Points for Suzuki’s Generalized Nonexpansive Mappings via New Iteration Process, Filomat 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U.
- W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3.
- J.A. Clarkson, Uniformly Convex Spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. https://doi.org/10.1090/S0002-9947-1936-1501880-4.
- D.R. Sahu, D. O’Regan, R.P. Agarwal, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer New York, 2009. https://doi.org/10.1007/978-0-387-75818-3.
- W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- Z. Opial, Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0.