Approximating Fixed Point of (α, β, γ)-Nonexpansive Mappings Using JK Iterative Scheme

Main Article Content

Muhammad Arif, Maggie Aphane, Kifayat Ullah, Maha Noorwali, Bashir Nawaz, Hayat Ullah

Abstract

In this manuscript, we analyze the fixed point approximation of (α, β, γ)-nonexpansive mappings using the JK iteration scheme. To evaluate its efficiency, we perform a comparative analysis with other iterative schemes for (α, β, γ)-nonexpansive mappings. Additionally, we establish the convergence results for sequence generated by the JK iterative scheme. Our work generalizes several results from the existing literature.

Article Details

References

  1. S. Banach, Sur les Opérations dans les Ensembles Abstraits et leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  2. E. Picard, Mémoire sur la Théorie des Équations aux Dérivées Partielles et la Méthode des Approximations Successives, J. Math. Pures Appl. 6 (1890), 145–210.
  3. F.E. Browder, Nonexpansive Nonlinear Operators in a Banach Space, Proc. Nat. Acad. Sci. 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041.
  4. D. Göhde, Zum Prinzip Der Kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312.
  5. T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.
  6. K. Aoyama, F. Kohsaka, Fixed Point Theorem for α-Nonexpansive Mappings in Banach Spaces, Nonlinear Anal.: Theory Methods Appl. 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057.
  7. K. Ullah, J. Ahmad, H.A. Hammad, R. George, Iterative Schemes for Numerical Reckoning of Fixed Points of New Nonexpansive Mappings with an Application, AIMS Math. 8 (2023), 10711–10727. https://doi.org/10.3934/math.2023543.
  8. R. Agarwal, D. O’Regan, D. Sahu, Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings, J. Nonlinear Convex Anal. 8 (2007), 61–79.
  9. J. Ahmad, K. Ullah, M. Arshad, Z. Ma, A New Iterative Method for Suzuki Mappings in Banach Spaces, J. Math. 2021 (2021), 6622931. https://doi.org/10.1155/2021/6622931.
  10. B. Nawaz, K. Ullah, K. Gdawiec, Convergence Analysis of a Picard-CR Iteration Process for Nonexpensive Mappings, Soft Comput. in Press.
  11. B. Nawaz, K. Ullah, K. Gdawiec, Convergence Analysis of Picard–SP Iteration Process for Generalized α–Nonexpansive Mappings, Numer. Algorithms (2024). https://doi.org/10.1007/s11075-024-01859-z.
  12. M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042.
  13. K. Ullah, M. Arshad, Numerical Reckoning Fixed Points for Suzuki’s Generalized Nonexpansive Mappings via New Iteration Process, Filomat 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U.
  14. W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3.
  15. J.A. Clarkson, Uniformly Convex Spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. https://doi.org/10.1090/S0002-9947-1936-1501880-4.
  16. D.R. Sahu, D. O’Regan, R.P. Agarwal, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer New York, 2009. https://doi.org/10.1007/978-0-387-75818-3.
  17. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
  18. Z. Opial, Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0.