Multiplicity of Positive Solutions for a Fractional Elliptic System With Strongly Coupled Critical Terms
Main Article Content
Abstract
By the Nehari method and variational method, two positive solutions are obtained for a fractional elliptic system with strongly coupled critical terms and concave-convex nonlinearities. Recent results from the literature are extended to the case of the integral fractional Laplacian form.
Article Details
References
- C.O. Alves, Y.H. Ding, Multiplicity of Positive Solutions to a p-Laplacian Equation Involving Critical Nonlinearity, J. Math. Anal. Appl. 279 (2003), 508–521. https://doi.org/10.1016/s0022-247x(03)00026-x.
- S. Benmouloud, R. Echarghaoui, Si.M. Sbaï, Multiplicity of Positive Solutions for a Critical Quasilinear Elliptic System With Concave and Convex Nonlinearities, J. Math. Anal. Appl. 396 (2012), 375–385. https://doi.org/10.1016/j.jmaa.2012.05.078.
- L. Brasco, S. Mosconi, M. Squassina, Optimal Decay of Extremals for the Fractional Sobolev Inequality, Calc. Var. Part. Diff. Equ. 55 (2016), 23. https://doi.org/10.1007/s00526-016-0958-y.
- H. Brézis, E. Lieb, A Relation Between Pointwise Convergence of Functions and Convergence of Functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.
- W. Chen, S. Deng, Multiple Solutions for a Critical Fractional Elliptic System Involving Concave-convex Nonlinearities, Proc. R. Soc. Edinburgh: Sect. A Math. 146 (2016), 1167–1193. https://doi.org/10.1017/s0308210516000032.
- E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s Guide to the Fractional Sobolev Spaces, Bull. Sci. Math. 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004.
- R. Echarghaoui, A. Hatimi, M. Hatimi, A Fractional Elliptic System With Strongly Coupled Critical Terms and Concave-Convex Nonlinearities, Int. J. Anal. Appl. 22 (2024), 107. https://doi.org/10.28924/2291-8639-22-2024-107.
- I. Ekeland, On the Variational Principle, J. Math. Anal. Appl. 47 (1974), 324–353. https://doi.org/10.1016/0022-247x(74)90025-0.
- A. Fiscella, Saddle Point Solutions for Non-Local Elliptic Operators, Topol. Methods Nonlinear Anal. 44 (2014), 527–538.
- P.G. Han, The Effect of the Domain Topology on the Number of Positive Solutions of Elliptic Systems Involving Critical Sobolev Exponents, Houston J. Math. 32 (2006), 1241–1257.
- X. He, M. Squassina, W. Zou, The Nehari Manifold for Fractional Systems Involving Critical Nonlinearities, Commun. Pure Appl. Anal. 15 (2016), 1285–1308.
- T.S. Hsu, Multiple Positive Solutions for a Critical Quasilinear Elliptic System With Concave–convex Nonlinearities, Nonlinear Anal.: Theory Methods Appl. 71 (2009), 2688–2698. https://doi.org/10.1016/j.na.2009.01.110.
- T.S. Hsu, H.L. Lin, Multiple Positive Solutions for a Critical Elliptic System With Concave—convex Nonlinearities, Proc. R. Soc. Edinburgh: Sect. A Math. 139 (2009), 1163–1177. https://doi.org/10.1017/s0308210508000875.
- R. Servadei, E. Valdinoci, Mountain Pass Solutions for Non-Local Elliptic Operators, J. Math. Anal. Appl. 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032.
- R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.
- T.F. Wu, On Semilinear Elliptic Equations Involving Concave–convex Nonlinearities and Sign-Changing Weight Function, J. Math. Anal. Appl. 318 (2006), 253–270. https://doi.org/10.1016/j.jmaa.2005.05.057.
- X. Zhou, H.Y. Li, J.F. Liao, Multiplicity of Positive Solutions for a Semilinear Elliptic System with Strongly Coupled Critical Terms and Concave Nonlinearities, Qual. Theory Dyn. Syst. 22 (2023), 126. https://doi.org/10.1007/s12346-023-00825-9.