Multiplicity of Positive Solutions for a Fractional Elliptic System With Strongly Coupled Critical Terms

Main Article Content

Khalid Benlhachmi, Rachid Echarghaoui, Abdelouhab Hatimi, Hicham Hadad

Abstract

By the Nehari method and variational method, two positive solutions are obtained for a fractional elliptic system with strongly coupled critical terms and concave-convex nonlinearities. Recent results from the literature are extended to the case of the integral fractional Laplacian form.

Article Details

References

  1. C.O. Alves, Y.H. Ding, Multiplicity of Positive Solutions to a p-Laplacian Equation Involving Critical Nonlinearity, J. Math. Anal. Appl. 279 (2003), 508–521. https://doi.org/10.1016/s0022-247x(03)00026-x.
  2. S. Benmouloud, R. Echarghaoui, Si.M. Sbaï, Multiplicity of Positive Solutions for a Critical Quasilinear Elliptic System With Concave and Convex Nonlinearities, J. Math. Anal. Appl. 396 (2012), 375–385. https://doi.org/10.1016/j.jmaa.2012.05.078.
  3. L. Brasco, S. Mosconi, M. Squassina, Optimal Decay of Extremals for the Fractional Sobolev Inequality, Calc. Var. Part. Diff. Equ. 55 (2016), 23. https://doi.org/10.1007/s00526-016-0958-y.
  4. H. Brézis, E. Lieb, A Relation Between Pointwise Convergence of Functions and Convergence of Functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.
  5. W. Chen, S. Deng, Multiple Solutions for a Critical Fractional Elliptic System Involving Concave-convex Nonlinearities, Proc. R. Soc. Edinburgh: Sect. A Math. 146 (2016), 1167–1193. https://doi.org/10.1017/s0308210516000032.
  6. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s Guide to the Fractional Sobolev Spaces, Bull. Sci. Math. 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004.
  7. R. Echarghaoui, A. Hatimi, M. Hatimi, A Fractional Elliptic System With Strongly Coupled Critical Terms and Concave-Convex Nonlinearities, Int. J. Anal. Appl. 22 (2024), 107. https://doi.org/10.28924/2291-8639-22-2024-107.
  8. I. Ekeland, On the Variational Principle, J. Math. Anal. Appl. 47 (1974), 324–353. https://doi.org/10.1016/0022-247x(74)90025-0.
  9. A. Fiscella, Saddle Point Solutions for Non-Local Elliptic Operators, Topol. Methods Nonlinear Anal. 44 (2014), 527–538.
  10. P.G. Han, The Effect of the Domain Topology on the Number of Positive Solutions of Elliptic Systems Involving Critical Sobolev Exponents, Houston J. Math. 32 (2006), 1241–1257.
  11. X. He, M. Squassina, W. Zou, The Nehari Manifold for Fractional Systems Involving Critical Nonlinearities, Commun. Pure Appl. Anal. 15 (2016), 1285–1308.
  12. T.S. Hsu, Multiple Positive Solutions for a Critical Quasilinear Elliptic System With Concave–convex Nonlinearities, Nonlinear Anal.: Theory Methods Appl. 71 (2009), 2688–2698. https://doi.org/10.1016/j.na.2009.01.110.
  13. T.S. Hsu, H.L. Lin, Multiple Positive Solutions for a Critical Elliptic System With Concave—convex Nonlinearities, Proc. R. Soc. Edinburgh: Sect. A Math. 139 (2009), 1163–1177. https://doi.org/10.1017/s0308210508000875.
  14. R. Servadei, E. Valdinoci, Mountain Pass Solutions for Non-Local Elliptic Operators, J. Math. Anal. Appl. 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032.
  15. R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.
  16. T.F. Wu, On Semilinear Elliptic Equations Involving Concave–convex Nonlinearities and Sign-Changing Weight Function, J. Math. Anal. Appl. 318 (2006), 253–270. https://doi.org/10.1016/j.jmaa.2005.05.057.
  17. X. Zhou, H.Y. Li, J.F. Liao, Multiplicity of Positive Solutions for a Semilinear Elliptic System with Strongly Coupled Critical Terms and Concave Nonlinearities, Qual. Theory Dyn. Syst. 22 (2023), 126. https://doi.org/10.1007/s12346-023-00825-9.