Analytical Solutions for a Nonlinear Quadratic Delayed Functional Integral Inclusion With Feedback Control on the Real Half-Line

Main Article Content

Ahmed M. A. El-Sayed, Nesreen F. M. El-Haddad

Abstract

Let E be a reflexive Banach space. In this research, we are interested in the solvability of the nonlinear quadratic delayed functional integral inclusion (NQDFII) with a feedback control condition on the real half-axis. Our examination is found within the space BC(R+, E) of bounded continuous functions on the real half-axis R+ and takes values in a reflexive Banach space E beneath the assumption that the set-valued function G satisfy Lipschitz condition in E. The base we depend on in this study is the procedure related to a measure of noncompactness in the space BC(R+, E) by a given norm of continuity and applying Darbo’s fixed point theorem. Moreover, the asymptotic stability of the solution and the asymptotic dependency of the solution on the set of selections SG will be examined. Also, we give an example to illustrate the adequacy and esteem of our comes about.

Article Details

References

  1. J. Banas, M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, New Delhi, 2014. https://doi.org/10.1007/978-81-322-1886-9.
  2. J. Banas, N. Merentes, B. Rzepka, Measures of Noncompactness in the Space of Continuous and Bounded Functions Defined on the Real Half-Axis, in: J. Bana?, M. Jleli, M. Mursaleen, B. Samet, C. Vetro (Eds.), Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, Springer Singapore, Singapore, 2017: pp. 1–58. https://doi.org/10.1007/978-981-10-3722-1_1.
  3. J. Banas, M. Jleli, M. Mursaleen, B. Samet, C. Vetro, eds., Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-3722-1.
  4. J. Banas, T. Zaj?c, Well?Posed Minimization Problems via the Theory of Measures of Noncompactness, in: M. Ruzhansky, H. Dutta, R.P. Agarwal (Eds.), Mathematical Analysis and Applications, 1st ed., Wiley, 2018: pp. 553–586. https://doi.org/10.1002/9781119414421.ch16.
  5. A. Aghajani, R. Allahyari and M. Mursaleen, A Generalization of Darbo’s Theorem With Application to the Solvability of Systems of Integral Equations, J. Comput. Appl. Math. 260 (2014), 68–77. https://doi.org/10.1016/j.cam.2013.09.039.
  6. J. Banas, A. Chlebowicz, On Solutions of an Infinite System of Nonlinear Integral Equations on the Real Half-Axis, Banach J. Math. Anal. 13 (2019), 944–968. https://doi.org/10.1215/17358787-2019-0008.
  7. J. Banas, A. Chlebowicz, W. Wos, On Measures of Noncompactness in the Space of Functions Defined on the Half-Axis With Values in a Banach Space, J. Math. Anal. Appl. 489 (2020), 124187. https://doi.org/10.1016/j.jmaa.2020.124187.
  8. A. Chlebowicz, Solvability of an Infinite System of Nonlinear Integral Equations of Volterra-Hammerstein Type, Adv. Nonlinear Anal. 9 (2019), 1187–1204. https://doi.org/10.1515/anona-2020-0045.
  9. A. Chlebowicz, Existence of Solutions to Infinite Systems of Nonlinear Integral Equations on the Real Half-Axis, Electron. J. Differ. Equ. 2021 (2021), 61. https://doi.org/10.58997/ejde.2021.61.
  10. B. Hazarika, R. Arab, M. Mursaleen, Application Measure of Noncompactness and Operator Type Contraction for Solvability of an Infinite System of Differential Equations in Lp-Space, Filomat 33 (2019), 2181–2189. https://doi.org/10.2298/fil1907181h.
  11. J. Banas, A. Chlebowicz, On Solutions of an Infinite System of Nonlinear Integral Equations on the Real Half-Axis, Banach J. Math. Anal. 13 (2019), 944–968. https://doi.org/10.1215/17358787-2019-0008.
  12. H.V.S. Chauhan, B. Singh, C. Tunc, O. Tunc, On the Existence of Solutions of Non-Linear 2D Volterra Integral Equations in a Banach Space, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116 (2022), 101. https://doi.org/10.1007/s13398-022-01246-0.
  13. O. Tunc, C. Tunc, G. Petrusel, J. Yao, On the Ulam Stabilities of Nonlinear Integral Equations and Integro?differential Equations, Math. Methods Appl. Sci. 47 (2024), 4014–4028. https://doi.org/10.1002/mma.9800.
  14. O. Tunc, C. Tunc, J.C. Yao, Global Existence and Uniqueness of Solutions of Integral Equations with Multiple Variable Delays and Integro Differential Equations: Progressive Contractions, Mathematics 12 (2024), 171. https://doi.org/10.3390/math12020171.
  15. P. Nasertayoob, Solvability and Asymptotic Stability of a Class of Nonlinear Functional-Integral Equation With Feedback Control, Commun. Nonlinear Anal. 5 (2018), 19–27.
  16. P. Nasertayoob, S.M. Vaezpour, Positive Periodic Solution for a Nonlinear Neutral Delay Population Equation With Feedback Control, J. Nonlinear Sci. Appl. 6 (2013), 152–161.
  17. A.M.A. El-Sayed, M.A.H. Alrashdi, On a Functional Integral Equation With Constraint Existence of Solution and Continuous Dependence, Int. J. Diff. Equ. Appl. 18 (2019), 37–48.
  18. A.M.A. El-Sayed, E.A. Hamdallah, R.G. Ahmed, On a Nonlinear Constrained Problem of a Nonlinear Functional Integral Equation, Appl. Anal. Optim. 6 (2022), 95–107.
  19. H.H.G. Hashem, A.M.A. El-Sayed, S.M. Al-Issa, Investigating Asymptotic Stability for Hybrid Cubic Integral Inclusion with Fractal Feedback Control on the Real Half-Axis, Fractal Fract. 7 (2023), 449. https://doi.org/10.3390/fractalfract7060449.
  20. I. Shlykova, A. Bulgakov, A. Ponosov, Functional Differential Inclusions Generated by Functional Differential Equations With Discontinuities, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 3518–3530. https://doi.org/10.1016/j.na.2011.02.037.
  21. A.M.A. El-Sayed, A.G. Ibrahim, Multivalued Fractional Differential Equations, Appl. Math. Comput. 68 (1995), 15–25. https://doi.org/10.1016/0096-3003(94)00080-n.
  22. A.G. Ibrahim, A.A. Elmandouh, Existence and Stability of Solutions of ψ-Hilfer Fractional Functional Differential Inclusions With Non-Instantaneous Impulses, AIMS Math. 6 (2021), 10802–10832. https://doi.org/10.3934/math.2021628.
  23. M. Benchohra, J.R. Graef, N. Guerraiche, S. Hamani, Nonlinear Boundary Value Problems for Fractional Differential Inclusions With Caputo-Hadamard Derivatives on the Half Line, AIMS Math. 6 (2021), 6278–6292. https://doi.org/10.3934/math.2021368.
  24. B.C. Dhage, First Order Functional Integro-Differential Inclusions With Periodic Boundary Conditions, Commun. Appl. Anal. 13 (2009), 71–92.
  25. B.C. Dhage, A Functional Integral Inclusion Involving Discontinuities, Fixed Point Theory 1 (2004), 53–64.
  26. B.C. Dhage, A Functional Integro-Differential Inclusions in Banach Algebras, Fixed Point Theory 6 (2005), 257–278.
  27. B.C. Dhage, A Functional Integral Inclusion Involving Caratheodories, Electron. J. Qual. Theory Diff. Equ. 2003 (2003), 14.
  28. P. Shvartsman, Lipschitz Selections of Set-Valued Mappings and Helly’s Theorem, J. Geom. Anal. 12 (2002), 289–324. https://doi.org/10.1007/bf02922044.
  29. S. Cobzas, R. Miculescu, A. Nicolae, Lipschitz Functions, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-16489-8.
  30. G. Darbo, Punti Uniti in Trasformazioni a Codominio Non Compatto, Rend. Semin. Mat. Univ. Padova. 24 (1955), 84–92.
  31. F. Chen, The Permanence and Global Attractivity of Lotka-volterra Competition System With Feedback Controls, Nonlinear Anal.: Real World Appl. 7 (2006), 133–143. https://doi.org/10.1016/j.nonrwa.2005.01.006.