On Some Results Related to Non-Uniform Tight Wavelet Frames

Main Article Content

Amit Kumar, Pooja Gupta

Abstract

The main objective of this paper is to develop some algorithms for the explicit construction of nonuniform tight wavelet frames using the unitary extension principles.

Article Details

References

  1. Abdullah, F.A. Shah, Scaling Functions on the Spectrum, Acta Univ. Sapientiae, Math. 10 (2018), 340–346. https://doi.org/10.2478/ausm-2018-0026.
  2. Ahmad K., Abdullah, Wavelet Packets and Their Statistical Applications, Springer, Singapore, (2018).
  3. C.K. Chui, W. He, Compactly Supported Tight Frames Associated with Refinable Functions, Appl. Comp. Harm. Anal. 8 (2000), 293–319. https://doi.org/10.1006/acha.2000.0301.
  4. C. K. Chui, W. He, J. Stöckler, Q. Sun, Compactly Supported Tight Affine Frames With Integer Dilations and Maximum Vanishing Moments, Adv. Comp. Math. 18 (2003), 159–187.https://doi.org/10.1023/A:1021318804341.
  5. I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-Based Constructions of Wavelet Frames, Appl. Comp. Harm. Anal. 14 (2003), 1–46. https://doi.org/10.1016/s1063-5203(02)00511-0.
  6. J.P. Gabardo, M.Z. Nashed, Nonuniform Multiresolution Analyses and Spectral Pairs, J. Funct. Anal. 158 (1998), 209–241. https://doi.org/10.1006/jfan.1998.3253.
  7. J.P. Gabardo and M. Nashed, An Analogue of Cohen’s Condition for Nonuniform Multiresolution Analyses, in: A. Aldroubi, E. Lin (Eds.), Wavelets, Multiwavelets and Their Applications, in: Contemporary Mathematics, 216, American Mathematical Society, Providence, RI, (1998), 41–61.
  8. H.K. Malhotra, L.K. Vashisht, Unitary Extension Principle for Nonuniform Wavelet Frames in L 2 (R), J. Math. Phys. Anal. Geom. 17 (2021), 79–94.https://doi.org/10.15407/mag17.01.079.
  9. S.G. Mallat, Multiresolution Approximations and Wavelet Orthonormal Bases of L 2 (R), Trans. Amer. Math. Soc. 315 (1989), 69–87.
  10. A.P. Petukhov, Explicit Construction of Framelets, Appl. Comput. Harm. Anal. 11 (2001), 313–327. https://doi.org/10.1006/acha.2000.0337.
  11. A.P. Petukhov, Symmetric Framelets, Constr. Approx. 19 (2003), 309–328. https://doi.org/10.1007/s00365-002-0522-1.
  12. A. Ron, Z. Shen, Affine Systems in L2(Rd ): The Analysis of the Analysis Operator, J. Funct. Anal. 148 (1997), 408–447. https://doi.org/10.1006/jfan.1996.3079.
  13. A. Ron, Z. Shen, Affine Systems in L2(Rd )-II: Dual Systems, J. Fourier Anal. Appl. 3 (1997), 617–637. https://doi.org/10.1007/BF02648888.
  14. F.A. Shah, Tight Wavelet Frames Generated by the Walsh Polynomials, Int. J. Wavelets Multiresolut. Inf. Process. 11 (2013), 1350042. https://doi.org/10.1142/S0219691313500422.
  15. F.A. Shah, Abdullah, A Characterization of Tight Wavelet Frames on Local Fields of Positive Characteristic, J. Contemp. Math. Anal. 49 (2014), 251–259.https://doi.org/10.3103/S1068362314060016.
  16. F.A. Shah, Inequalities for Nonuniform Wavelet Frames, Georgian Math. J. 28 (2019), 149–156. https://doi.org/10.1515/gmj-2019-2026.
  17. V. Sharma, P. Manchanda, Nonuniform Wavelet Frames in L 2 (R), Asian-Eur. J. Math. 8 (2015), 1550034. https://doi.org/10.1142/S1793557115500345.