The Existence of Weak Relative Pseudo-Complements in Almost Distributive Lattices
Main Article Content
Abstract
In this paper, we introduce weak relative annulets in almost distributive lattices and study their algebraic properties. Also, we introduce weak relative pseudo-complements and correlate with relative complements and pseudo-complements in an almost distributive lattice.
Article Details
References
- S. Burris, H.P. Sankappanavar, A First Course in Universal Algebra, Spinger, (1981).
- W.H. Cornish, Annulets and α-Ideals in a Distributive Lattice, J. Aust. Math. Soc. 15 (1973), 70–77. https://doi.org/10.1017/s1446788700012775.
- Y.L. Ershov, Relatively Complemented, Distributive Lattices, Algebr. Log. 18 (1979), 431–459. https://doi.org/10.1007/bf01673954.
- O. Frink, Pseudo-complements in Semi-Lattices, Duke Math. J. 29 (1962), 505–514. https://doi.org/10.1215/s0012-7094-62-02951-4.
- J. Cirullis, Weak Relative Annihilators in Posets, Bull. Sect. log. 40 (2011), 1–12.
- J. C¯ırulis, Weak Relative Pseudocomplements in Semilattices, Demonstr. Math. 44 (2011), 651–672. https://doi.org/10.1515/dema-2013-0334.
- M. Mandelker, Relative Annihilators in Lattices, Duke Math. J. 37 (1970), 377–386. https://doi.org/10.1215/s0012-7094-70-03748-8.
- C.S.S. Raj, S.N. Rao, M. Santhi, K.R. Rao, Relative Pseudo-Complementations on ADL’s, Int. J. Math. Soft Comput. 7 (2017), 95–108.
- G.C. Rao, M.S. Rao, Annulets in Almost Distributive Lattices, Eur. J. Pure Appl. Math. 2 (2009), 58–72.
- R. Giacobazzi, C. Palamidessi, F. Ranzato, Weak Relative Pseudo-Complements of Closure Operators, Algebr. Univ. 36 (1996), 405–412. https://doi.org/10.1007/bf01236765.
- M.H. Stone, The Theory of Representation for Boolean Algebras, Trans. Am. Math. Soc. 40 (1936), 37. https://doi.org/10.2307/1989664.
- U.M. Swamy, G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. 31 (1981), 77–91. https://doi.org/10.1017/s1446788700018498.
- U.M. Swamy, G.C. Rao, G.N. Rao, Pseudo-complementation on Almost Distributive Lattices, Southeast Asian Bull. Math. 24 (2000), 95–104. https://doi.org/10.1007/s10012-000-0095-5.
- R.V. Babu, C.S.S. Raj, B. Venkateswarlu, Weak Pseudo-Complementations on ADL’s, Arch. Math. 50 (2014), 151–159. https://doi.org/10.5817/am2014-3-151.