A Comprehensive View of the Solvability and Stability of a Feedback Control Problem with a State-Dependent Delay Implicit Pantograph Equation
Main Article Content
Abstract
In this paper, we examine the existence of a unique solution of a feedback control problem with an implicit state-dependent pantograph equation. Additionally, the study implements the problem’s Hyers-Ulam stability and the continuous dependence of the unique solution on the initial data and the parameters. Furthermore, we investigate this problem in the absence of feedback control. We also provide some examples to illustrate our results.
Article Details
References
- M.R. Abdollahpour, R. Aghayari, M.Th. Rassias, Hyers-Ulam Stability of Associated Laguerre Differential Equations in a Subclass of Analytic Functions, J. Math. Anal. Appl. 437 (2016), 605–612. https://doi.org/10.1016/j.jmaa.2016.01.024.
- M.R. Abdollahpour, M.Th. Rassias, Hyers-Ulam Stability of Hypergeometric Differential Equations, Aequat. Math. 93 (2018), 691–698. https://doi.org/10.1007/s00010-018-0602-3.
- M.R. Abdollahpour, A. Najati, Stability of Linear Differential Equations of Third Order, Appl. Math. Lett. 24 (2011), 1827–1830. https://doi.org/10.1016/j.aml.2011.04.043.
- C. Alsina, R. Ger, On Some Inequalities and Stability Results Related to the Exponential Function, J. Ineq. Appl. 2 (1998), 373–380.
- V.A. Ambartsumian, On the Fluctuation of the Brightness of the Milky Way, Dokl. Akad. Nauk SSSR 44 (1994), 223–226.
- P.K. Anh, N.T.T. Lan, N.M. Tuan, Solutions to Systems of Partial Differential Equations With Weighted SelfReference and Heredity, Elec. J. Diff. Equ. 2012 (2012), 117.
- P. Andrzej, On Some Iterative-Differential Equation I, Zeszyty Naukowe UJ Prace Mat. 12 (1968), 53–56.
- R. Bellman, Stability Theory of Differential Equations, Dover Publications, New York, 2013.
- L. Berezansky, E. Braverman, Solution Estimates for Linear Differential Equations With Delay, Appl. Math. Comp. 372 (2020), 124962. https://doi.org/10.1016/j.amc.2019.124962.
- V. Berinde, Existence and Approximation of Solutions of Some First Order Iterative Differential Equations, Miskolc Math. Notes 11 (2010), 13–26. https://doi.org/10.18514/mmn.2010.256.
- A. Buicá, Existence and Continuous Dependence of Solutions of Some Functional-Differential Equations, In: Seminar on Fixed Point Theory, Cluj-Napoca, Romania, vol. 3, pp. 1–14, 1995.
- J. Chu, G. Meng, Z. Zhang, Continuous Dependence and Estimates of Eigenvalues for Periodic Generalized Camassa-Holm Equations, J. Diff. Equ. 269 (2020), 6343–6358. https://doi.org/10.1016/j.jde.2020.04.042.
- C. Cosentino, D. Bates, Feedback Control in Systems Biology, CRC Press, 2011.
- N.J. Cowan, M.M. Ankarali, J.P. Dyhr, M.S. Madhav, E. Roth, S. Sefati, S. Sponberg, S.A. Stamper, E.S. Fortune, T.L. Daniel, Feedback Control as a Framework for Understanding Tradeoffs in Biology, Integr. Compar. Biol. 54 (2014), 223–237. https://doi.org/10.1093/icb/icu050.
- R.F. Curtain, A.J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, 1977.
- M. De la Sen, S. Alonso-Quesada, Control Issues for the Beverton-Holt Equation in Ecology by Locally Monitoring the Environment Carrying Capacity: Non-Adaptive and Adaptive Cases, Appl. Math. Comp. 215 (2009), 2616– 2633. https://doi.org/10.1016/j.amc.2009.09.003.
- P. De Leenheer, H. Smith, Feedback Control for Chemostat Models, J. Math. Biol. 46 (2003), 48–70. https://doi.org/10.1007/s00285-002-0170-x.
- D. Del Vecchio, A.J. Dy, Y. Qian, Control Theory Meets Synthetic Biology, J. R. Soc. Interface. 13 (2016), 20160380. https://doi.org/10.1098/rsif.2016.0380.
- E. Eder, The Functional Differential Equation x 0 (t) = x(x(t)), J. Diff. Equ. 54 (1984), 390–400. https://doi.org/10.1016/0022-0396(84)90150-5.
- A.M.A. El-Sayed, A.A.A. Alhamali, E.M.A. Hamdallah, H.R. Ebead, Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint, Fractal Fract. 7 (2023), 835. https://doi.org/10.3390/fractalfract7120835.
- A.M.A. El-Sayed, H.H.G. Hashem, Sh.M. Al-Issa, A Comprehensive View of the Solvability of Non-Local Fractional Orders Pantograph EquationWith a Fractal-Fractional Feedback Control, AIMS Math. 9 (2024), 19276–19298. https://doi.org/10.3934/math.2024939.
- A.M.A. El-Sayed, H.R. Ebead, On the Solvability of a Self-Reference Functional and Quadratic Functional Integral Equations, Filomat 34 (2020), 129–141. https://doi.org/10.2298/fil2001129e.
- A.M.A. El-Sayed, H.R. Ebead, On the Existence of Continuous Positive Monotonic Solutions of a Self-Reference Quadratic Integral Equation, J. Math. Appl. 43 (2020), 67–80.
- A.M.A. El-sayed, E. Hamdallah, H.R. Ebead, Positive Nondecreasing Solutions of a Self-Refereed Differential Equation With Two State-Delay Functions, Adv. Math., Sci. J. 9 (2020), 10357–10365. https://doi.org/10.37418/amsj.9.12.26.
- A.M.A. El-sayed, E. Hamdallah, H.R. Ebead, On a Nonlocal Boundary Value Problem of a State-Dependent Differential Equation, Mathematics 9 (2021), 2800. https://doi.org/10.3390/math9212800.
- A.M.A. El-sayed, H.R. Ebead, Positive Solutions of an Initial Value Problem of a Delay-Self-Reference Nonlinear Differential Equation, Malaya J. Mat. 8 (2020), 1001–1006. https://doi.org/10.26637/mjm0803/0046.
- M, Féckan, On a Certain Type of Functional Differential Equations, Math. Slovaca, 43 (1993), 39–43. http://dml.cz/dmlcz/130391.
- C.G. Gal, Nonlinear Abstract Differential Equations With Deviated Argument, J. Math. Anal. Appl. 333 (2007), 971–983. https://doi.org/10.1016/j.jmaa.2006.11.033.
- D.P. Gaver Jr, An Absorption Probability Problem, J. Math. Anal. Appl. 9 (1964), 384–393. https://doi.org/10.1016/0022-247x(64)90024-1.
- M.E. Gordji, Y. Cho, M. Ghaemi, B. Alizadeh, Stability of the Second Order Partial Differential Equations, J. Ineq. Appl. 2011 (2011), 81. https://doi.org/10.1186/1029-242x-2011-81.
- T. Griebel, The Pantograph Equation in Quantum Calculus, Thesis, Missouri University of Science and Technology, 2017.
- A.J. Hall, G.C. Wake, A Functional Differential Equation Arising in Modelling of Cell Growth, J. Aust. Math. Soc. Ser. B, Appl. Math. 30 (1989), 424–435. https://doi.org/10.1017/s0334270000006366.
- R. Haloi, P. Kumar, D.N. Pandey, Sufficient Conditions for the Existence and Uniqueness of Solutions to Impulsive Fractional Integro-Differential Equations With Deviating Arguments, J. Fract. Calc. Appl. 5 (2014), 73–84.
- H. Jafari, M. Mahmoudi, M.H. Noori Skandari, A New Numerical Method to Solve Pantograph Delay Differential Equations With Convergence Analysis, Adv. Diff. Equ. 2021 (2021), 129. https://doi.org/10.1186/s13662-021-03293-0.
- S.M. Jung, Hyers-Ulam Stability of Linear Differential Equations of First Order, Appl. Math. Lett. 17 (2004), 1135–1140. https://doi.org/10.1016/j.aml.2003.11.004.
- L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, New York, 1982.
- M. Lauran, Existence Results for Some Differential Equations With Deviating Argument, Filomat, 25 (2011), 21–31. https://www.jstor.org/stable/24895536.
- J. Bana´s, M. Lecko, W.G. El-Sayed, Existence Theorems for Some Quadratic Integral Equations, J. Math. Anal. Appl. 222 (1998), 276–285. https://doi.org/10.1006/jmaa.1998.5941.
- J.C. Letelier, T. Kuboyama, H. Yasuda, M.L. Cardenas, A. Cornish-Bowden, A Self-Referential Equation, f(f) = f, Obtained Using the Theory of (M,R)-Systems: Overview and Applications, In: H. Anai, K. Horimoto (eds), Algebraic Biology, Universal Academy Press, Tokyo, pp. 115–126.
- K. Mahler, On a Special Functional Equation, J. London Math. Soc. s1-15 (1940), 115–123. https://doi.org/10.1112/jlms/s1-15.2.115.
- S.H. Marshall, D.R. Smith, Feedback, Control, and the Distribution of Prime Numbers, Math. Mag. 86 (2013), 189–203. https://doi.org/10.4169/math.mag.86.3.189.
- M. Miranda Jr., E. Pascali, On a Type of Evolution of Self-Referred and Hereditary Phenomena, Aequat. Math. 71 (2006), 253–268. https://doi.org/10.1007/s00010-005-2821-7.
- P. Nasertayoob, Solvability and Asymptotic Stability of a Class of Nonlinear Functional-Integral Equation With Feedback Control, Commun. Nonlinear Anal. 5 (2018), 19–27.
- P. Nasertayoob, S.M. Vaezpour, Positive Periodic Solution for a Nonlinear Neutral Delay Population Equation With Feedback Control, J. Nonlinear Sci. Appl. 6 (2013), 152–161.
- J.R. Ockendon, A.B. Taylor, The Dynamics of a Current Collection System for an Electric Locomotive, Proc. R. Soc. London A 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078.
- S. Peiffer, T. Dan, T. Frevert, B. Cavari, Survival of E. Coli and Enterococci in Sediment-Water Systems of Lake Kinneret Under (Feedback) Controlled Concentrations of Hydrogen Sulfide, Water Res. 22 (1988), 233–240. https://doi.org/10.1016/0043-1354(88)90083-8.
- T.M. Rassias, Functional Equations and Inequalities, Kluwer Academic Publishers, Dordrecht, 2000.
- S. Rezapour, S. Etemad, R.P. Agarwal, K. Nonlaopon, On a Lyapunov-Type Inequality for Control of a ψ-Model Thermostat and the Existence of Its Solutions, Mathematics 10 (2022), 4023. https://doi.org/10.3390/math10214023.
- J.H. Shao, K. Zhao, Continuous Dependence for Stochastic Functional Differential Equations with State-Dependent Regime-Switching on Initial Values, Acta. Math. Sin.-English Ser. 37 (2020), 389–407. https://doi.org/10.1007/s10114-020-9205-8.
- G.E. Stewart, D.M. Gorinevsky, G.A. Dumont, Feedback Controller Design for a Spatially Distributed System: The Paper Machine Problem, IEEE Trans. Contr. Syst. Technol. 11 (2003), 612–628. https://doi.org/10.1109/tcst.2003.816420.
- V. Spiridonov, Universal Superpositions of Coherent States and Self-Similar Potentials, Phys. Rev. A 52 (1995), 1909–1935. https://doi.org/10.1103/physreva.52.1909.
- N.M. Tuan, L.T.T. Nguyen, On Solutions of a System of Hereditary and Self-Referred Partial-Differential Equations, Numer. Algor. 55 (2010), 101–113. https://doi.org/10.1007/s11075-009-9360-6.
- C. Tunç, E. Biçer, Hyers-Ulam-Rassias Stability for a First Order Functional Differential Equation, J. Math. Fund. Sci. 47 (2015), 143–153.
- O. Tunç, C. Tunç, Ulam Stabilities of Nonlinear Iterative Integro-Differential Equations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM. 117 (2023), 118. https://doi.org/10.1007/s13398-023-01450-6.
- O. Tunç, C. Tunç, G. Petru¸sel, J. Yao, On the Ulam Stabilities of Nonlinear Integral Equations and Integrodifferential Equations, Math Methods Appl. Sci. 47 (2024), 4014–4028. https://doi.org/10.1002/mma.9800.
- U. Van Le, L.T. Nguyen, Existence of Solutions for Systems of Self-Referred and Hereditary Differential Equations, Elec. J. Diff. Equ. 2008 (2008), 51.
- G.C. Wake, S. Cooper, H.K. Kim, B.V. Brunt, Functional Differential Equations for Cell Growth Models With Dispersion, Commun. Appl. Anal. 4 (2000), 561–573.
- G.J. Weiner, Activation of NK Cell Responses and Immunotherapy of Cancer, in: J.D. Rosenblatt, E.R. Podack, G.N. Barber, A. Ochoa (Eds.), Advances in Tumor Immunology and Immunotherapy, Springer, New York, 2014: pp. 57–66. https://doi.org/10.1007/978-1-4614-8809-5_4.
- D. Yang, W. Zhang, Solutions of Equivariance for Iterative Differential Equations, Appl. Math. Lett. 17 (2004), 759–765. https://doi.org/10.1016/j.aml.2004.06.002.
- A. Zada, B. Pervaiz, M. Subramanian, I.L. Popa, Finite Time Stability for Nonsingular Impulsive First Order Delay Differential Systems, Appl. Math. Comp. 421 (2022), 126943. https://doi.org/10.1016/j.amc.2022.126943.
- K. Zhao, Stability of a Nonlinear Langevin System of ML-Type Fractional Derivative Affected by Time-Varying Delays and Differential Feedback Control, Fractal Fract. 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725.