Existence and Uniqueness Solutions of Multi-Term Delay Caputo Fractional Differential Equations
Main Article Content
Abstract
This study investigates a novel type of nonlocal boundary value problem with multipoint-integral boundaries and multi-term delay Caputo fractional differential equations (FDE). The provided problem is turned into an analogous fixed-point problem using fixed-point (F P) theory tools. Additionally, discussing about stability, in Ulam-Hyers-Rassias (UHR), Ulam-Hyers (UH), generalized Ulam-Hyers-Rassias (GUHR) and generalized Ulam-Hyers (GUH) stability, for finding the problem. Based on our obtained results we given some examples. As of our obtained results are very useful to multi-term caputo FDE related to hydrodynamics.
Article Details
References
- J. Sabatier, O.P. Agrawal, J.A.T. Machado, eds., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-6042-7.
- H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application, Academic Press, London, 2017.
- V.M. Bulavatsky, Mathematical Models and Problems of Fractional-Differential Dynamics of Some Relaxation Filtration Processes, Cybern. Syst. Anal. 54 (2018), 727–736. https://doi.org/10.1007/s10559-018-0074-4.
- P. Li, R. Gao, C. Xu, Y. Li, A. Akgül, D. Baleanu, Dynamics Exploration for a Fractional-Order Delayed Zooplankton–phytoplankton System, Chaos Solitons Fractals 166 (2023), 112975. https://doi.org/10.1016/j.chaos.2022.112975.
- A.N. Chatterjee, B. Ahmad, A Fractional-Order Differential Equation Model of COVID-19 Infection of Epithelial Cells, Chaos Solitons Fractals 147 (2021), 110952. https://doi.org/10.1016/j.chaos.2021.110952.
- D. Kusnezov, A. Bulgac, G.D. Dang, Quantum Lévy Processes and Fractional Kinetics, Phys. Rev. Lett. 82 (1999), 1136–1139. https://doi.org/10.1103/physrevlett.82.1136.
- C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation Mechanism for Fractional-Order Three-Triangle Multi-delayed Neural Networks, Neural Process Lett. 55 (2022), 6125–6151. https://doi.org/10.1007/s11063-022-11130-y.
- G. Alotta, M. Di Paola, F.P. Pinnola, M. Zingales, A Fractional Nonlocal Approach to Nonlinear Blood Flow in Small-Lumen Arterial Vessels, Meccanica 55 (2020), 891–906. https://doi.org/10.1007/s11012-020-01144-y.
- F. Zhang, G. Chen, C. Li, J. Kurths, Chaos Synchronization in Fractional Differential Systems, Phil. Trans. R. Soc. A. 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- B. Ahmad, S.K. Ntouyas, Nonlocal Nonlinear Fractional-Order Boundary Value Problems, World Scientific, 2021. https://doi.org/10.1142/12102.
- R.P. Agarwal, V. Lupulescu, D. O’Regan, G. ur Rahman, Multi-Term Fractional Differential Equations in a Nonreflexive Banach Space, Adv. Differ. Equ. 2013 (2013), 302. https://doi.org/10.1186/1687-1847-2013-302.
- B. Ahmad, N. Alghamdi, A. Alsaedi, S.K. Ntouyas, A System of Coupled Multi-Term Fractional Differential Equations with Three-Point Coupled Boundary Conditions, Fract. Calc. Appl. Anal. 22 (2019), 601–616. https://doi.org/10.1515/fca-2019-0034.
- M. Delkhosh, K. Parand, A New Computational Method Based on Fractional Lagrange Functions to Solve Multi-Term Fractional Differential Equations, Numer. Algor. 88 (2021), 729–766. https://doi.org/10.1007/s11075-020-01055-9.
- B. Ahmad, M. Alblewi, S.K. Ntouyas, A. Alsaedi, Existence Results for a Coupled System of Nonlinear Multi-term Fractional Differential Equations With Anti-periodic Type Coupled Nonlocal Boundary Conditions, Math. Methods Appl. Sci. 44 (2021), 8739–8758. https://doi.org/10.1002/mma.7301.
- B. Ahmad, A. Alsaedi, N. Alghamdi, S.K. Ntouyas, Existence Theorems for a Coupled System of Nonlinear MultiTerm Fractional Differential Equations with Nonlocal Boundary Conditions, Kragujevac J. Math. 46 (2022), 317–331. https://doi.org/10.46793/kgjmat2202.317a.
- A. Diop, Existence of Mild Solutions for Multi-Term Time Fractional Measure Differential Equations, J. Anal. 30 (2022), 1609–1623. https://doi.org/10.1007/s41478-022-00420-2.
- H. Gou, On the S-Asymptotically ω-Periodic Mild Solutions for Multi-Term Time Fractional Measure Differential Equations, Topol. Methods Nonlinear Anal. 62 (2023), 569–590. https://doi.org/10.12775/tmna.2023.015.
- C. Chen, L. Liu, Q. Dong, Existence and Hyers-Ulam Stability for Boundary Value Problems of Multi-Term Caputo Fractional Differential Equations, Filomat 37 (2023), 9679–9692. https://doi.org/10.2298/fil2328679c.
- Y.S. Kang, S.H. Jo, Spectral Collocation Method for Solving Multi-Term Fractional Integro-Differential Equations With Nonlinear Integral, Math. Sci. 18 (2022), 91–106. https://doi.org/10.1007/s40096-022-00487-9.
- M. Dieye, E.H. Lakhel, M.A. McKibben, Controllability of Fractional Neutral Functional Differential Equations With Infinite Delay Driven by Fractional Brownian Motion, IMA J. Math. Control Inf. 38 (2021), 929–956. https://doi.org/10.1093/imamci/dnab020.
- R. Chaudhary, V. Singh, D.N. Pandey, Controllability of Multi-Term Time-Fractional Differential Systems With State-Dependent Delay, J. Appl. Anal. 26 (2020), 241–255. https://doi.org/10.1515/jaa-2020-2016.
- H. Zhao, J. Zhang, J. Lu, J. Hu, Approximate Controllability and Optimal Control in Fractional Differential Equations With Multiple Delay Controls, Fractional Brownian Motion With Hurst Parameter in 0 < H < 1 2 , and Poisson Jumps, Comm. Nonlinear Sci. Numer. Simul. 128 (2024), 107636. https://doi.org/10.1016/j.cnsns.2023.107636.
- H. Boulares, A. Ardjouni, Y. Laskri, Existence and Uniqueness of Solutions for Nonlinear Fractional Nabla Difference Systems With Initial Conditions, Fract. Differ. Calc. 7 (2017), 247–263. https://doi.org/10.7153/fdc-2017-07-10.
- Y. Guo, X. B. Shu, Y. Li, F. Xu, The Existence and Hyers-Ulam Stability of Solution for an Impulsive RiemannLiouville Fractional Neutral Functional Stochastic Differential Equation With Infinite Delay of Order 2 < β < 2, Bound. Value Probl. 2019 (2019), 59. https://doi.org/10.1186/s13661-019-1172-6.
- X. Wang, D. Luo, Q. Zhu, Ulam-Hyers Stability of Caputo Type Fuzzy Fractional Differential Equations With Time-Delays, Chaos Solitons Fractals 156 (2022), 111822. https://doi.org/10.1016/j.chaos.2022.111822.
- R. Chaharpashlou, A.M. Lopes, Hyers-Ulam-Rassias Stability of a Nonlinear Stochastic Fractional Volterra IntegroDifferential Equation, J. Appl. Anal. Comp. 13 (2023), 2799–2808. https://doi.org/10.11948/20230005.
- T. Abdeljawad, A Lyapunov Type Inequality for Fractional Operators With Nonsingular Mittag-Leffler Kernel, J. Ineq. Appl. 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5.
- T. Abdeljawad, D. Baleanu, Discrete Fractional Differences With Nonsingular Discrete Mittag-Leffler Kernels, Adv. Differ. Equ. 2016 (2016), 232. https://doi.org/10.1186/s13662-016-0949-5.
- T. Abdeljawad, D. Baleanu, On Fractional Derivatives with Exponential Kernel and their Discrete Versions, Rep. Math. Phys. 80 (2017), 11–27. https://doi.org/10.1016/s0034-4877(17)30059-9.
- F. Jarad, T. Abdeljawad, Z. Hammouch, On a Class of Ordinary Differential Equations in the Frame of Atanganabaleanu Fractional Derivative, Chaos Solitons Fractals 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006.
- G. Rahman, R. P. Agarwal, D. Ahmad, Existence and Stability Analysis of nth Order Fractional Delay Differential Equation, Chaos Solitons Fractals 155 (2022), 111709. https://doi.org/10.1016/j.chaos.2021.111709.
- P.J. Torvik, R.L. Bagley, On the Appearance of the Fractional Derivative in the Behavior of Real Materials, J. Appl. Mech. 51 (1984), 294–298. https://doi.org/10.1115/1.3167615.
- F. Mainardi, P. Pironi, F. Tampieri, On a Generalization of the Basset Problem via Fractional Calculus, In: B. Tabarrok, S. Dost, (eds.) Proceedings 15th Canadian Congress of Applied Mechanics, vol. 2, pp. 836–837. University of Victoria 1995.
- A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003. https://doi.org/10.1007/978-0-387-21593-8.