Almost ∗-Ricci Soliton on α-paraSasakian Manifold

Main Article Content

Kanika Sood, Khushbu Srivastava, Sachin Kumar Srivastava, Mohammad Nazrul Islam Khan

Abstract

It has been noted that if the ∗-Ricci tensor used to define ∗-Ricci soliton is a constant multiple of the metric tensor g(ei,ej), for all ei, ej orthogonal to characteristic vector field ξ, then the manifold is ∗-Einstein manifold. The metric associated with ∗-Einstein manifold is ∗-Einstein metric, and the ∗-Ricci soliton is its generalization. In this paper we study an almost ∗-Ricci soliton (g, W, λ) and an almost gradient ∗-Ricci soliton (g, grad (ρ), λ) by means of mathematical operators on (2m+1)-dimensional α-paraSasakian manifold S2m+1.

Article Details

References

  1. R.S. Hamilton, The Ricci flow on surfaces, Mathematics and General Relativity, Contemp. Math. 71 (1988), 237–261. https://cir.nii.ac.jp/crid/1573105975542168832.
  2. G. Kaimakamis, K. Panagiotidou, ∗-Ricci Solitons of Real Hypersurfaces in Non-Flat Complex Space Forms, J. Geom. Phys. 86 (2014), 408–413. https://doi.org/10.1016/j.geomphys.2014.09.004.
  3. S. Tachibana, On Almost-Analytic Vectors in Almost-Kählerian Manifolds, Tohoku Math. J. 11 (1959), 247–265. https://doi.org/10.2748/tmj/1178244584.
  4. T. Hamada, Real Hypersurfaces of Complex Space Forms in Terms of Ricci ∗-Tensor, Tokyo J. Math. 25 (2002), 473–483. https://doi.org/10.3836/tjm/1244208866.
  5. K. De, A Note on Gradient ∗-Ricci Solitons, Math. Sci. Appl. E-Notes 8 (2020), 79–85. https://doi.org/10.36753/mathenot.727083.
  6. X. Chen, Real Hypersurfaces With ∗-Ricci Tensors in Complex Two-Plane Grassmannians, Bull. Korean Math. Soc. 54 (2017), 975–992. https://doi.org/10.4134/BKMS.B160414.
  7. R.S. Gupta, S. Rani, ∗-Ricci Soliton on GSSF with Sasakian Metric, Note Mat. 42 (2022), 95–108. https://doi.org/10.1285/i15900932v42n1p95.
  8. R. Ma, D. Pei, ∗-Ricci Tensor on (κ, µ)-Contact Manifolds, AIMS Math. 7 (2022), 11519–11528. https://doi.org/10.3934/math.2022642.
  9. M. Ben Ayed, K. El Mehdi, Multiplicity Results for the Scalar Curvature Problem on Half Spheres, Discr. Contin. Dyn. Syst. 44 (2024), 1878–1900. https://doi.org/10.3934/dcds.2024013.
  10. S. Elsaeed, O. Moaaz, K.S. Nisar, M. Zakarya, E.M. Elabbasy, Sufficient Criteria for Oscillation of Even-Order Neutral Differential Equations With Distributed Deviating Arguments, AIMS Math. 9 (2024), 15996–16014. https://doi.org/10.3934/math.2024775.
  11. B.B. Chaturvedi, P. Bhagat, M.N.I. Khan, Novel Theorems for a Bochner Flat Lorentzian Kahler Space-Time Manifold with η-Ricci-Yamabe Solitons, Chaos Solitons Fractals: X 11 (2023), 100097. https://doi.org/10.1016/j.csfx.2023.100097.
  12. A. Sardar, M.N.I. Khan, U.C. De, η-∗-Ricci Solitons and Almost co-Kähler Manifolds, Mathematics 9 (2021), 3200. https://doi.org/10.3390/math9243200.
  13. N. Omar, S. Serra-Capizzano, B. Qaraad, F. Alharbi, O. Moaaz, E.M. Elabbasy, More Effective Criteria for Testing the Oscillation of Solutions of Third-Order Differential Equations, Axioms 13 (2024), 139. https://doi.org/10.3390/axioms13030139.
  14. K. De M.N.I. Khan, U.C. De, Almost co-Kähler Manifolds and (m, ρ)-Quasi-Einstein Solitons, Chaos Solitons Fractals, 167 (2023), 113050. https://doi.org/10.1016/j.chaos.2022.113050.
  15. A. Haseeb, S.K. Chaubey, F. Mofarreh, A.A.H. Ahmadini, A Solitonic Study of Riemannian Manifolds Equipped with a Semi-Symmetric Metric ξ-Connection, Axioms 12 (2023), 809. https://doi.org/10.3390/axioms12090809.
  16. D.G. Prakasha, M.R. Amruthalakshmi, F. Mofarreh, A. Haseeb, Generalized Lorentzian Sasakian-Space-Forms with M-Projective Curvature Tensor, Mathematics 10 (2022), 2869. https://doi.org/10.3390/math10162869.
  17. S. Kumar, M. Bilal, R. Prasad, A. Haseeb, Z. Chen, V-Quasi-Bi-Slant Riemannian Maps, Symmetry 14 (2022), 1360. https://doi.org/10.3390/sym14071360.
  18. A. Haseeb, M. Bilal, S.K. Chaubey, A.A.H. Ahmadini, ξ-Conformally Flat LP-Kenmotsu Manifolds and RicciYamabe Solitons, Mathematics 11 (2022), 212. https://doi.org/10.3390/math11010212.
  19. U.C. De, Y.J. Suh, S.K. Chaubey, Semi-Symmetric Curvature Properties of Robertson–Walker Spacetimes, Z. Mat. Fiz. Anal. Geom. 18 (2022), 368–381. https://doi.org/10.15407/mag18.03.368.
  20. J.T. Cho, M. Kimura, Ricci Solitons and Real Hypersurfaces in a Complex Space Form, Tohoku Math. J. 61 (2009), 205–212. https://doi.org/10.2748/tmj/1245849443.
  21. G. Calvaruso, A. Perrone, Ricci Solitons in Three-Dimensional Paracontact Geometry, J. Geom. Phys. 98 (2015), 1–12. https://doi.org/10.1016/j.geomphys.2015.07.021.
  22. U.C. De, K. Mandal, Ricci Almost Solitons and Gradient Ricci Almost Solitons in (k, µ)-Paracontact Geometry, Bol. Soc. Paran. Mat. 37 (2017), 119–130. https://doi.org/10.5269/bspm.v37i3.33027.
  23. D.S. Patra, Ricci Solitons and Paracontact Geometry, Mediterr. J. Math. 16 (2019), 137. https://doi.org/10.1007/s00009-019-1419-6.
  24. B.Y. Chen, Some Results on Concircular Vector Fields and Their Applications to Ricci Solitons, Bull. Korean Math. Soc. 52 (2015), 1535–1547. https://doi.org/10.4134/BKMS.2015.52.5.1535.
  25. R. Sharma, A. Ghosh, Sasakian 3-Manifold as a Ricci Soliton Represents the Heisenberg Group, Int. J. Geom. Methods Mod. Phys. 08 (2011), 149–154. https://doi.org/10.1142/s021988781100504x.
  26. M.N.I. Khan, S.K. Chaubey, N. Fatima, A. Al Eid, Metallic Structures for Tangent Bundles over Almost Quadratic φ-Manifolds, Mathematics 11 (2023), 4683. https://doi.org/10.3390/math11224683.
  27. M.N.I. Khan, U.C. De, L.S. Velimirovic, Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle, Mathematics 11 (2022), 53. https://doi.org/10.3390/math11010053.
  28. S. Kaneyuki, F.L. Williams, Almost Paracontact and Parahodge Structures on Manifolds, Nagoya Math. J. 99 (1985), 173–187. https://doi.org/10.1017/s0027763000021565.
  29. A. Ghosh, D.S. Patra, ∗-Ricci Soliton Within the Frame-Work of Sasakian and (k, µ)-Contact Manifold, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850120. https://doi.org/10.1142/s0219887818501207.
  30. S. Zamkovoy, G. Nakova, The Decomposition of Almost Paracontact Metric Manifolds in Eleven Classes Revisited, J. Geom. 109 (2018), 18. https://doi.org/10.1007/s00022-018-0423-5.
  31. K. Matsumoto, Conformal Killing Vector Fields in a P-Sasakian Manifold, J. Korean Math. Soc. 14 (1977), 135–142.
  32. K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.