Exploring the Influence of Generalized Kernels on Green’s Function in Fractional Differential Equations

Main Article Content

Sarah Aljohani, Maliha Rashid, Amna Kalsoom, Nabil Mlaiki

Abstract

The basic purpose of this article is to define the Green’s function in order to provide the solution of fractional differential equations in the presence of general analytic kernel. Using the technique of Laplace and Fourier transforms, we construct the Green’s function for ordinary and partial fractional differential equations. The presented results will provide the generalization of some models existing in the literature. Some examples are also provided to prove the results for some particular cases.

Article Details

References

  1. A. Fernandez, M.A. Özarslan, D. Baleanu, On Fractional Calculus with General Analytic Kernels, Appl. Math. Comp. 354 (2019), 248–265. https://doi.org/10.1016/j.amc.2019.02.045.
  2. R.L. Magin, Fractional Calculus in Bioengineering, Begell House, Redding, 2006.
  3. I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, 2006. https://doi.org/10.1007/978-3-642-18101-6.
  4. Z. Liu, X. Li, Approximate Controllability of Fractional Evolution Systems with Riemann–Liouville Fractional Derivatives, SIAM J. Control Optim. 53 (2015), 1920–1933. https://doi.org/10.1137/120903853.
  5. B. Yu, X. Jiang, H. Qi, An Inverse Problem to Estimate an Unknown Order of a Riemann–Liouville Fractional Derivative for a Fractional Stokes’ First Problem for a Heated Generalized Second Grade Fluid, Acta Mech. Sinica 31 (2015), 153–161. https://doi.org/10.1007/s10409-015-0408-7.
  6. Y. Povstenko, Fractional Thermoelasticity, Springer, 2015.
  7. D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional Calculus: Models and Numerical Methods, World Scientific, 2012. https://doi.org/10.1142/10044.
  8. M. Caputo, Linear Models of Dissipation Whose Q Is Almost Frequency Independent–II, Geophys. J. Int. 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.
  9. T. Zhou, C. Li, Synchronization in Fractional-Order Differential Systems, Physica D: Nonlinear Phenom. 212 (2005), 111–125. https://doi.org/10.1016/j.physd.2005.09.012.
  10. C.P. Li, W.H. Deng, D. Xu, Chaos Synchronization of the Chua System with a Fractional Order, Physica A: Stat. Mech. Appl. 360 (2006), 171–185. https://doi.org/10.1016/j.physa.2005.06.078.
  11. H. Sun, A. Abdelwahab, B. Onaral, Linear Approximation of Transfer Function with a Pole of Fractional Power, IEEE Trans. Autom. Control 29 (1984), 441–444. https://doi.org/10.1109/TAC.1984.1103551.
  12. A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio, F. Mainardi, A Practical Guide to Prabhakar Fractional Calculus, Fract. Calc. Appl. Anal. 23 (2020), 9–54. https://doi.org/10.1515/fca-2020-0002.
  13. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  14. H.M. Srivastava, Z. Tomovski, Fractional Calculus with an Integral Operator Containing a Generalized Mittag–Leffler Function in the Kernel, Appl. Math. Comp. 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055.
  15. T. Sandev, Generalized Langevin Equation and the Prabhakar Derivative, Mathematics 5 (2017), 66. https://doi.org/10.3390/math5040066.
  16. R. Garra, R. Garrappa, The Prabhakar or Three Parameter Mittag–Leffler Function: Theory and Application, Comm. Nonlinear Sci. Numer. Simul. 56 (2018), 314–329. https://doi.org/10.1016/j.cnsns.2017.08.018.
  17. A. Atangana, D. Baleanu, New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model, arXiv:1602.03408 [math.GM], (2016). http://arxiv.org/abs/1602.03408.
  18. D. Baleanu, A. Fernandez, On Some New Properties of Fractional Derivatives with Mittag-Leffler Kernel, Comm. Nonlinear Sci. Numer. Simul. 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003.
  19. J.D. Djida, A. Atangana, I. Area, Numerical Computation of a Fractional Derivative with Non-Local and NonSingular Kernel, Math. Model. Nat. Phenom. 12 (2017), 4–13. https://doi.org/10.1051/mmnp/201712302.
  20. F. Jarad, T. Abdeljawad, J. Alzabut, Generalized Fractional Derivatives Generated by a Class of Local Proportional Derivatives, Eur. Phys. J. Spec. Topics 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7.
  21. D. Baleanu, M. Jleli, S. Kumar, B. Samet, A Fractional Derivative with Two Singular Kernels and Application to a Heat Conduction Problem, Adv. Diff. Equ. 2020 (2020), 252. https://doi.org/10.1186/s13662-020-02684-z.
  22. Z.Q. Chen, P. Kim, T. Kumagai, J. Wang, Heat Kernel Estimates for Time Fractional Equations, Forum Math. 30 (2018), 1163–1192. https://doi.org/10.1515/forum-2017-0192.
  23. M. Kelbert, V. Konakov, S. Menozzi, Weak Error for Continuous Time Markov Chains Related to Fractional in Time P(I)DEs, Stoch. Processes Appl. 126 (2016), 1145–1183. https://doi.org/10.1016/j.spa.2015.10.013.
  24. I. Johnston, V. Kolokoltsov, Green’s Function Estimates for Time-Fractional Evolution Equations, Fract. Fraction. 3 (2019), 36. https://doi.org/10.3390/fractalfract3020036.
  25. G. Rahman, M. Samraiz, M.A. Alqudah, T. Abdeljawad, MultivariateMittag-Leffler Function and Related Fractional Integral Operators, AIMS Math. 8 (2023), 13276–13293. https://doi.org/10.3934/math.2023671.
  26. A. Lachouri, M.S. Abdo, A. Ardjouni, K. Shah, T. Abdeljawad, Investigation of Fractional Order Inclusion Problem with Mittag-Leffler Type Derivative, J. Pseudo-Diff. Oper. Appl. 14 (2023), 43. https://doi.org/10.1007/s11868-023-00537-3.
  27. T. Abdeljawad, S.T.M. Thabet, I. Kedim, M.I. Ayari, A. Khan, A Higher-Order Extension of Atangana–Baleanu Fractional Operators with Respect to Another Function and a Gronwall-Type Inequality, Bound. Value Probl. 2023 (2023), 49. https://doi.org/10.1186/s13661-023-01736-z.