In Vivo Dynamics of HIV-1 Infection With Impaired Antibody Immunity and Three General Infection Mechanisms

Main Article Content

Reham H. Halawani, Noura H. AlShamrani, Ahmed M. Elaiw

Abstract

In this paper we investigate two generalized human immunodeficiency virus type-1 (HIV-1) dynamics models with impaired antibody immunity. The models include both latently and actively infected cells. Three infection mechanisms are incorporated into the models, viral infection mechanism (VIM), latent cellular infection mechanism (CIM) and active CIM. The three infection rates are provided by generic nonlinear functions. The second model includes three types of distributed time delays. We find that our models are biologically feasible. The global stability analysis of equilibria are performed and found the basic reproduction ratio (R0) as a threshold parameter. Using Lyapunov method we show that, the virus-free equilibrium is globally asymptotically stable when R0≤1 and the virus-persistence equilibrium is globally asymptotically stable when R0>1. Sensitivity analysis on R0 is studied. To support our theoretical results we provide some numerical simulations. We have demonstrated that R0 is influenced by all three of the infection types, and that if one of them were ignored, R0 would be underestimated. This might lead to inadequate medication effectiveness that aims to remove HIV-1 from the body. The effects of time delay and impaired antibody immunity on HIV-1 progression are examined. According to our research, lowered immunity is a significant factor in the infection's growth. Furthermore, time delays might drastically reduce R0, which would prevent HIV-1 from replicating. The information provided by our research in this work can improve our comprehension of HIV-1 dynamics within-host and provide guidance for the creation of novel pharmacological treatments.

Article Details

References

  1. S.Y. Zhang, M.A. Taye, The Efficacy of Antiviral Drug, HIV Viral Load and the Immune Response, arXiv:2101.10413 [physics.bio-ph] (2021). http://arxiv.org/abs/2101.10413.
  2. D.Wodarz, D.N. Levy, Human Immunodeficiency Virus Evolution Towards Reduced Replicative Fitnessin Vivoand the Development of AIDS, Proc. R. Soc. B. 274 (2007), 2481–2491. https://doi.org/10.1098/rspb.2007.0413.
  3. S.L. Swain, K.K. McKinstry, T.M. Strutt, Expanding Roles for CD4 + T Cells in Immunity to Viruses, Nat. Rev. Immunol. 12 (2012), 136–148. https://doi.org/10.1038/nri3152.
  4. UNAIDS, 2023 UNAIDS Global AIDS Update, https://thepath.unaids.org.
  5. D. Callaway, HIV-1 Infection and Low Steady State Viral Loads, Bull. Math. Biol. 64 (2002), 29–64. https://doi.org/10.1006/bulm.2001.0266.
  6. A.S. Perelson, P.W. Nelson, Mathematical Analysis of HIV-1 Dynamics in Vivo, SIAM Rev. 41 (1999), 3–44. https://doi.org/10.1137/s0036144598335107.
  7. M.A. Nowak, R.M. May, Virus Dynamics, Oxford University Press, Oxford, 2000.
  8. M.A. Nowak, C.R.M. Bangham, Population Dynamics of Immune Responses to Persistent Viruses, Science 272 (1996), 74–79. https://doi.org/10.1126/science.272.5258.74.
  9. E.A. Hernandez-Vargas, R.H. Middleton, Modeling the Three Stages in HIV Infection, J. Theor. Biol. 320 (2013), 33–40. https://doi.org/10.1016/j.jtbi.2012.11.028.
  10. M.A. Stafford, L. Corey, Y. Cao, E.S. Daar, D.D. Ho, A.S. Perelson, Modeling Plasma Virus Concentration during Primary HIV Infection, J. Theor. Biol. 203 (2000), 285–301. https://doi.org/10.1006/jtbi.2000.1076.
  11. D. Wodarz, R.M. May, M.A. Nowak, The Role of Antigen-Independent Persistence of Memory Cytotoxic T Lymphocytes, Int. Immunol. 12 (2000), 467–477. https://doi.org/10.1093/intimm/12.4.467.
  12. C. Jolly, Q.J. Sattentau, Retroviral Spread by Induction of Virological Synapses, Traffic 5 (2004), 643–650. https://doi.org/10.1111/j.1600-0854.2004.00209.x.
  13. C. Vargas-Garcia, R. Zurakowski, A. Singh, Synaptic Transmission May Provide an Evolutionary Benefit to Hiv Through Modulation of Latency, J. Theor. Biol. 455 (2018), 261–268. https://doi.org/10.1016/j.jtbi.2018.07.030.
  14. M. Sourisseau, N. Sol-Foulon, F. Porrot, F. Blanchet, O. Schwartz, Inefficient Human Immunodeficiency Virus Replication in Mobile Lymphocytes, J. Virol. 81 (2007), 1000–1012. https://doi.org/10.1128/jvi.01629-06.
  15. H. Sato, J. Orensteint, D. Dimitrov, M. Martin, Cell-to-Cell Spread of HIV-1 Occurs Within Minutes and May Not Involve the Participation of Virus Particles, Virology 186 (1992), 712–724. https://doi.org/10.1016/0042-6822(92)90038-q.
  16. S. Iwami, J.S. Takeuchi, S. Nakaoka, F. Mammano, F. Clavel, H. Inaba, T. Kobayashi, N. Misawa, K. Aihara, Y. Koyanagi, K. Sato, Cell-to-Cell Infection by HIV Contributes Over Half of Virus Infection, eLife 4 (2015), e08150. https://doi.org/10.7554/elife.08150.
  17. N.L. Komarova, D. Wodarz, Virus Dynamics in the Presence of Synaptic Transmission, Math. Biosci. 242 (2013), 161–171. https://doi.org/10.1016/j.mbs.2013.01.003.
  18. N. Martin, Q. Sattentau, Cell-to-Cell HIV-1 Spread and Its Implications for Immune Evasion, Curr. Opin. HIV AIDS 4 (2009), 143–149. https://doi.org/10.1097/coh.0b013e328322f94a.
  19. A. Sigal, J.T. Kim, A.B. Balazs, E. Dekel, A. Mayo, R. Milo, D. Baltimore, Cell-to-Cell Spread of HIV Permits Ongoing Replication Despite Antiretroviral Therapy, Nature 477 (2011), 95–98. https://doi.org/10.1038/nature10347.
  20. Y. Gao, J. Wang, Threshold Dynamics of a Delayed Nonlocal Reaction-Diffusion Hiv Infection Model With Both Cell-Free and Cell-to-Cell Transmissions, J. Math. Anal. Appl. 488 (2020), 124047. https://doi.org/10.1016/j.jmaa.2020.124047.
  21. J. Lin, R. Xu, X. Tian, Threshold Dynamics of an HIV-1 Virus Model With Both Virus-to-Cell and Cell-to-Cell Transmissions, Intracellular Delay, and Humoral Immunity, Appl. Math. Comp. 315 (2017), 516–530. https://doi.org/10.1016/j.amc.2017.08.004.
  22. T. Zheng, Y. Luo, Z. Teng, Spatial dynamics of a viral infection model with immune response and nonlinear incidence, Z. Angew. Math. Phys. 74 (2023), 124. https://doi.org/10.1007/s00033-023-02015-8.
  23. Y. Luo, L. Zhang, T. Zheng, Z. Teng, Analysis of a Diffusive Virus Infection Model With Humoral Immunity, Cell-to-Cell Transmission and Nonlinear Incidence, Physica A: Stat. Mech. Appl. 535 (2019), 122415. https://doi.org/10.1016/j.physa.2019.122415.
  24. R. Zhang, S. Liu, Global Dynamics of an Age-Structured Within-Host Viral Infection Model With Cell-to-Cell Transmission and General Humoral Immunity Response, Math. Biosci. Eng. 17 (2020), 1450–1478. https://doi.org/10.3934/mbe.2020075.
  25. Z. She, X. Jiang, Threshold Dynamics of a General Delayed Within-Host Viral Infection Model With Humoral Immunity and Two Modes of Virus Transmission, Discr. Contin. Dyn. Syst.-Ser. B 26 (2021), 3835–3861. https://doi.org/10.3934/dcdsb.2020259.
  26. S. Pan, S.P. Chakrabarty, Threshold Dynamics of HCV Model With Cell-to-Cell Transmission and a Non-Cytolytic Cure in the Presence of Humoral Immunity, Comm. Nonlinear Sci. Numer. Simul. 61 (2018), 180–197. https://doi.org/10.1016/j.cnsns.2018.02.010.
  27. M. Dhar, S. Samaddar, P. Bhattacharya, Modeling the Cell-to-Cell Transmission Dynamics of Viral Infection Under the Exposure of Non-Cytolytic Cure, J. Appl. Math. Comp. 65 (2020), 885–911. https://doi.org/10.1007/s12190-020-01420-w.
  28. A. De Milito, B Lymphocyte Dysfunctions in HIV Infection, Curr. HIV Res. 2 (2004), 11–21. https://doi.org/10.2174/1570162043485068.
  29. S. Amu, N. Ruffin, B. Rethi, F. Chiodi, Impairment of B-cell Functions during HIV-1 Infection, AIDS 27 (2013), 2323–2334. https://doi.org/10.1097/qad.0b013e328361a427.
  30. F. Chiodi, G. Scarlatti, Editorial: HIV-Induced Damage of B Cells and Production of HIV Neutralizing Antibodies, Front. Immunol. 9 (2018), 297. https://doi.org/10.3389/fimmu.2018.00297.
  31. P. Lydyard, A. Whelan, M. Fanger, BIOS Instant Notes in Immunology, Taylor & Francis, 2005. https://doi.org/10.4324/9780203808306.
  32. H. Miao, X. Abdurahman, Z. Teng, L. Zhang, Dynamical Analysis of a Delayed Reaction-Diffusion Virus Infection Model With Logistic Growth and Humoral Immune Impairment, Chaos Solitons Fractals 110 (2018), 280–291. https://doi.org/10.1016/j.chaos.2018.03.006.
  33. A.M. Elaiw, S.F. Alshehaiween, A.D. Hobiny, Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions, Mathematics 7 (2019), 837. https://doi.org/10.3390/math7090837.
  34. A.M. Elaiw, S.F. Alshehaiween, A.D. Hobiny, Global Properties of HIV Dynamics Models Including Impairment of B-Cell Functions, J. Biol. Syst. 28 (2020), 1–25. https://doi.org/10.1142/s0218339020500011.
  35. P. Wu, H. Zhao, Mathematical Analysis of an Age-Structured HIV/AIDS Epidemic Model With Haart and Spatial Diffusion, Nonlinear Anal.: Real World Appl. 60 (2021), 103289. https://doi.org/10.1016/j.nonrwa.2021.103289.
  36. P. Wu, Z. Feng, X. Zhang, Global Dynamics of an Age–space Structured HIV/AIDS Model With Viral LoadDependent Infection and Conversion Rates, J. Comp. Appl. Math. 412 (2022), 114309. https://doi.org/10.1016/j.cam.2022.114309.
  37. P. Wu, R. Zhang, A. Din, Mathematical Analysis of an Age-Since Infection and Diffusion HIV/AIDS Model With Treatment Adherence and Dirichlet Boundary Condition, Math. Comp. Simul. 214 (2023), 1–27. https://doi.org/10.1016/j.matcom.2023.06.018.
  38. L. Rong, A.S. Perelson, Modeling HIV Persistence, the Latent Reservoir, and Viral Blips, J. Theor. Biol. 260 (2009), 308–331. https://doi.org/10.1016/j.jtbi.2009.06.011.
  39. B.J. Nath, K. Sadri, H.K. Sarmah, K. Hosseini, An Optimal Combination of Antiretroviral Treatment and Immunotherapy for Controlling HIV Infection, Math. Comp. Simul. 217 (2024), 226–243. https://doi.org/10.1016/j.matcom.2023.10.012.
  40. T.W. Chun, L. Stuyver, S.B. Mizell, L.A. Ehler, J.A.M. Mican, M. Baseler, A.L. Lloyd, M.A. Nowak, A.S. Fauci, Presence of an Inducible HIV-1 Latent Reservoir During Highly Active Antiretroviral Therapy, Proc. Natl. Acad. Sci. U.S.A. 94 (1997), 13193–13197. https://doi.org/10.1073/pnas.94.24.13193.
  41. J.K. Wong, M. Hezareh, H.F. Gunthard, D.V. Havlir, C.C. Ignacio, C.A. Spina, D.D. Richman, Recovery of Replication-Competent HIV Despite Prolonged Suppression of Plasma Viremia, Science 278 (1997), 1291–1295. https://doi.org/10.1126/science.278.5341.1291.
  42. L.M. Agosto, M.B. Herring, W. Mothes, A.J. Henderson, HIV-1-Infected CD4+ T Cells Facilitate Latent Infection of Resting CD4+ T Cells through Cell-Cell Contact, Cell Rep. 24 (2018), 2088–2100. https://doi.org/10.1016/j.celrep.2018.07.079.
  43. W. Wang, X. Wang, K. Guo, W. Ma, Global Analysis of a Diffusive Viral Model With Cell-to-cell Infection and Incubation Period, Math. Methods Appl. Sci. 43 (2020), 5963–5978. https://doi.org/10.1002/mma.6339.
  44. K. Hattaf, H. Dutta, Modeling the Dynamics of Viral Infections in Presence of Latently Infected Cells, Chaos Solitons Fractals 136 (2020), 109916. https://doi.org/10.1016/j.chaos.2020.109916.
  45. A.M. Elaiw, N.H. AlShamrani, Stability of a General CTL-Mediated Immunity HIV Infection Model With Silent Infected Cell-to-Cell Spread, Adv. Diff. Equ. 2020 (2020), 355. https://doi.org/10.1186/s13662-020-02818-3.
  46. N.H. AlShamrani, R.H. Halawani, W. Shammakh, A.M. Elaiw, Stability of Impaired Humoral Immunity HIV1 Models with Active and Latent Cellular Infections, Computation 11 (2023), 207. https://doi.org/10.3390/computation11100207.
  47. A.M. Elaiw, S.F. Alshehaiween, Global Stability of Delay-distributed Viral Infection Model With Two Modes of Viral Transmission and B-cell Impairment, Math. Methods Appl. Sci. 43 (2020), 6677–6701. https://doi.org/10.1002/mma.6408.
  48. A.M. Elaiw, S.F. Alshehaiween, A.D. Hobiny, Impact of B-Cell Impairment on Virus Dynamics With Time Delay and Two Modes of Transmission, Chaos Solitons Fractals 130 (2020), 109455. https://doi.org/10.1016/j.chaos.2019.109455.
  49. A.M. Elaiw, N.H. AlShamrani, Global Stability of Humoral Immunity Virus Dynamics Models With Nonlinear Infection Rate and Removal, Nonlinear Anal.: Real World Appl. 26 (2015), 161–190. https://doi.org/10.1016/j.nonrwa.2015.05.007.
  50. H. Shu, Y. Chen, L. Wang, Impacts of the Cell-Free and Cell-to-Cell Infection Modes on Viral Dynamics, J. Dyn. Diff. Equ. 30 (2017), 1817–1836. https://doi.org/10.1007/s10884-017-9622-2.
  51. P. van den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6.
  52. A. Korobeinikov, Global Properties of Basic Virus Dynamics Models, Bull. Math. Biol. 66 (2004), 879–883. https://doi.org/10.1016/j.bulm.2004.02.001.
  53. J.K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993.
  54. H.K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, Upper Saddle River, 2002.
  55. G. Huang, Y. Takeuchi, W. Ma, Lyapunov Functionals for Delay Differential Equations Model of Viral Infections, SIAM J. Appl. Math. 70 (2010), 2693–2708. https://doi.org/10.1137/090780821.
  56. J. Xu, G. Huang, Global Stability and Bifurcation Analysis of a Virus Infection Model with Nonlinear Incidence and Multiple Delays, Fractal Fract. 7 (2023), 583. https://doi.org/10.3390/fractalfract7080583.
  57. Y. Kuang, Delay Differential Equations With Applications in Population Dynamics, Academic Press, San Diego, 1993.
  58. P.H. Crowley, E.K. Martin, Functional Responses and Interference within and between Year Classes of a Dragonfly Population, J. N. Amer. Benthol. Soc. 8 (1989), 211–221. https://doi.org/10.2307/1467324.
  59. R.K. Upadhyay, R.K. Naji, Dynamics of a Three Species Food Chain Model With Crowley–martin Type Functional Response, Chaos Solitons Fractals 42 (2009), 1337–1346. https://doi.org/10.1016/j.chaos.2009.03.020.
  60. F. Gazori, M. Hesaaraki, Global Stability of a Within-Host Dynamics of Malaria and the Immune System With Crowley-Martin Functional Response, Asian J. Math. Comp. Res. 3 (2015), 201–219.
  61. J.P. Tripathi, S. Tyagi, S. Abbas, Global Analysis of a Delayed Density Dependent Predator–prey Model With Crowley-martin Functional Response, Comm. Nonlinear Sci. Numer. Simul. 30 (2016), 45–69. https://doi.org/10.1016/j.cnsns.2015.06.008.
  62. R.K.K. Upadhyay, S.N.N. Raw, V. Rai, Dynamical Complexities in a Tri-Trophic Hybrid Food Chain Model With Holling Type II and Crowley–martin Functional Responses, Nonlinear Anal.: Model. Control 15 (2010), 361–375. https://doi.org/10.15388/na.15.3.14331.
  63. I. Nali, A. Dénes, Global Dynamics of a Within-Host Model for Usutu Virus, Computation 11 (2023), 226. https://doi.org/10.3390/computation11110226.
  64. S.K. Sahani, Yashi, Effects of Eclipse Phase and Delay on the Dynamics of HIV Infection, J. Biol. Syst. 26 (2018), 421–454. https://doi.org/10.1142/s0218339018500195.
  65. F. Li, W. Ma, Dynamics Analysis of an HTLV-1 Infection Model With Mitotic Division of Actively Infected Cells and Delayed CTL Immune Response, Math Methods Appl. Sci. 41 (2018), 3000–3017. https://doi.org/10.1002/mma.4797.
  66. A.S. Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV Infection of CD4+ T Cells, Math. Biosci. 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-a.
  67. H. Mohri, S. Bonhoeffer, S. Monard, A.S. Perelson, D.D. Ho, Rapid Turnover of T Lymphocytes in SIV-Infected Rhesus Macaques, Science 279 (1998), 1223–1227. https://doi.org/10.1126/science.279.5354.1223.
  68. Y. Wang, J. Liu, L. Liu, Viral Dynamics of an HIV Model With Latent Infection Incorporating Antiretroviral Therapy, Adv. Diff. Equ. 2016 (2016), 225. https://doi.org/10.1186/s13662-016-0952-x.
  69. S. Wang, X. Song, Z. Ge, Dynamics Analysis of a Delayed Viral Infection Model With Immune Impairment, Appl. Math. Model. 35 (2011), 4877–4885. https://doi.org/10.1016/j.apm.2011.03.043.
  70. C. Yan, W. Wang, Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies, Bull. Math. Biol. 81 (2019), 2625–2648. https://doi.org/10.1007/s11538-019-00621-0.
  71. C. Sun, L. Li, J. Jia, Hopf Bifurcation of an Hiv-1 Virus Model With Two Delays and Logistic Growth, Math. Model. Nat. Phenom. 15 (2020), 16. https://doi.org/10.1051/mmnp/2019038.
  72. S. Wang, D. Zou, Global Stability of In-Host Viral Models With Humoral Immunity and Intracellular Delays, Appl. Math. Model. 36 (2012), 1313–1322. https://doi.org/10.1016/j.apm.2011.07.086.
  73. T. Wang, Z. Hu, F. Liao, W. Ma, Global Stability Analysis for Delayed Virus Infection Model With General Incidence Rate and Humoral Immunity, Math. Comp. Simul. 89 (2013), 13–22. https://doi.org/10.1016/j.matcom.2013.03.004.
  74. K. Allali, J. Danane, Y. Kuang, Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase, Appl. Sci. 7 (2017), 861. https://doi.org/10.3390/app7080861.
  75. Q. Sun, L. Min, Y. Kuang, Global Stability of Infection-free State and Endemic Infection State of a Modified Human Immunodeficiency Virus Infection Model, IET Syst. Biol. 9 (2015), 95–103. https://doi.org/10.1049/iet-syb.2014.0046.
  76. A.M. Elaiw, Global Threshold Dynamics in Humoral Immunity Viral Infection Models Including an Eclipse Stage of Infected Cells, J. Korean Soc. Ind. Appl. Math. 19 (2015), 137–170. https://doi.org/10.12941/JKSIAM.2015.19.137.
  77. K. Hattaf, Global Stability and Hopf Bifurcation of a Generalized Viral Infection Model With Multi-Delays and Humoral Immunity, Physica A: Stat. Mech. Appl. 545 (2020), 123689. https://doi.org/10.1016/j.physa.2019.123689.
  78. X. Wang, L. Rong, HIV Low Viral Load Persistence Under Treatment: Insights From a Model of Cell-to-Cell Viral Transmission, Appl. Math. Lett. 94 (2019), 44–51. https://doi.org/10.1016/j.aml.2019.02.019.