A New Flexible Extension of the XLindley Distribution with Properties and Application on Income Tax and Carbon Fibers Data
Main Article Content
Abstract
A new and enhanced extension of the XLindley distribution termed the sized-biased XLindley distribution (SBXLD), has been introduced. This new model explores two specific variants: the length-biased XLindley distribution and the area-biased XLindley distribution. Various crucial properties such as moments, moment generating function, quantile function, survival, and hazard functions, mean residual life function, and Rényi entropy have been derived and extensively investigated. For parameter estimation, five distinct methods have been employed to estimate the model parameters. Through a comprehensive simulation study, the most effective estimation method has been identified. The applicability and efficiency of the SBXLD model have been demonstrated using two datasets from different domains. It has been observed that the SBXLD model effectively analyzed these datasets and yielded superior results compared to other competitive distributions under consideration.
Article Details
References
- A. Azzalini, A Class of Distributions Which Includes the Normal Ones, Scand. J. Stat. 12 (1985), 171–178. https://www.jstor.org/stable/4615982.
- W.T. Shaw, I.R.C. Buckley, The Alchemy of Probability Distributions: Beyond Gram-Charlier Expansions, and a Skew-Kurtotic-Normal Distribution from a Rank Transmutation Map, arXiv:0901.0434 [q-fin.ST], (2009). http://arxiv.org/abs/0901.0434.
- R.D. Gupta, D. Kundu, Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions, Biometrical J. 43 (2001), 117–130. https://doi.org/10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R.
- N. Eugene, C. Lee, F. Famoye, Beta-Normal Distribution and Its Applications, Commun. Stat. - Theory Meth. 31 (2002), 497–512. https://doi.org/10.1081/STA-120003130.
- G.M. Cordeiro, M. De Castro, A New Family of Generalized Distributions, J. Stat. Comp. Simul. 81 (2011), 883–898. https://doi.org/10.1080/00949650903530745.
- C. Lee, F. Famoye, A.Y. Alzaatreh, Methods for Generating Families of Univariate Continuous Distributions in the Recent Decades, WIREs Comp. Stat. 5 (2013), 219–238. https://doi.org/10.1002/wics.1255.
- M. Bourguignon, R.B. Silva, G.M. Cordeiro, The Weibull- G Family of Probability Distributions, J. Data Sci. 12 (2014), 53–68. https://doi.org/10.6339/JDS.2014.12(1).1210.
- M.H. Tahir, M. Zubair, M. Mansoor, G.M. Cordeiro, M. Alizadeh, G.G. Hamedani, A New Weibull-G Family of Distributions, Hacettepe J. Math. Stat. 45 (2016), 629–647. https://doi.org/10.15672/HJMS.2015579686.
- M. Ahsan-ul-Haq, M. Elgarhy, The Odd Frѐchet-G Family of Probability Distributions, J. Stat. Appl. Prob. 7 (2018), 189–203. https://doi.org/10.18576/jsap/070117.
- M. Ahsan-ul-Haq, M. Elgarhy, S. Hashmi, The Generalized Odd Burr III Family of Distributions: Properties, Applications and Characterizations, J. Taibah Univ. Sci. 13 (2019), 961–971. https://doi.org/10.1080/16583655.2019.1666785.
- M. Ahsan-ul-Haq, M.K. Shahzad, S. Tariq, The Inverted Nadarajah–Haghighi Power Series Distributions, Int. J. Appl. Comp. Math. 10 (2024), 11. https://doi.org/10.1007/s40819-023-01551-1.
- R.A. Fisher, The Effect of Methods of Ascertainment upon the Estimation of Frequencies, Ann. Eugenics 6 (1934), 13–25. https://doi.org/10.1111/j.1469-1809.1934.tb02105.x.
- D.R. Cox, Renewal Theory Methuen’s Monograph, Barnes and Noble, Inc. New York, 1962.
- C.R. Rao, On Discrete Distributions Arising Out of Methods of Ascertainment, Sankhyā: Indian J. Stat. Ser. A 27 (1965), 311–324. https://www.jstor.org/stable/25049375.
- S.T. Dara, M. Ahmad, Recent Advances in Moment Distribution and Their Hazard Rates, LAP LAMBERT Academic Publishing, 2012.
- A. Ahmad, S.P. Ahmad, A. Ahmed, Length-Biased Weighted Lomax Distribution: Statistical Properties and Application, Pak. J. Stat. Oper. Res. 12 (2016), 245-255. https://doi.org/10.18187/pjsor.v12i2.1178.
- A. Ayesha, Size Biased Lindley Distribution and Its Properties a Special Case of Weighted Distribution, Appl. Math. 08 (2017), 808–819. https://doi.org/10.4236/am.2017.86063.
- V.K. Sharma, S. Dey, S.K. Singh, U. Manzoor, On Length and Area-Biased Maxwell Distributions, Commun. Stat. - Simul. Comp. 47 (2018), 1506–1528. https://doi.org/10.1080/03610918.2017.1317804.
- A.I. Al-Omari, A.D. Al-Nasser, E. Ciavolino, A Size-Biased Ishita Distribution and Application to Real Data, Qual. Quant. 53 (2019), 493–512. https://doi.org/10.1007/s11135-018-0765-y.
- I.K. Alsmairan, A.I. Al-Omari, Weighted Suja Distribution with Application to Ball Bearings Data, Life Cycle Reliab. Safe. Eng. 9 (2020), 195–211. https://doi.org/10.1007/s41872-019-00106-y.
- S. Chouia, H. Zeghdoudi, V. Raman, A. Beghriche, A New Size Biased Distribution with Application, J. Appl. Prob. Stat. 16 (2021), 111–125.
- H.A. Khogeer, An Improved One-Parameter Weighted Distribution with Mathematical Properties, Estimation, and Applications, Alexandria Eng. J. 104 (2024), 222–234. https://doi.org/10.1016/j.aej.2024.06.005.
- S. Chouia, H. Zeghdoudi, The XLindley Distribution: Properties and Application, J. Stat. Theory Appl. 20 (2021), 318. https://doi.org/10.2991/jsta.d.210607.001.
- M. Ahsan-ul-Haq, S. Hashmi, K. Aidi, P.L. Ramos, F. Louzada, Unit Modified Burr-III Distribution: Estimation, Characterizations and Validation Test, Ann. Data Sci. 10 (2023), 415–440. https://doi.org/10.1007/s40745-020-00298-6.
- M. Ibrahim, M.K.A. Shah, M. Ahsan-ul-Haq, New Two-Parameter XLindley Distribution with Statistical Properties, Simulation and Applications on Lifetime Data, Int. J. Model. Simul. (2023), 1–14. https://doi.org/10.1080/02286203.2023.2199251.
- A.Z. Afify, M. Ahsan-ul-Haq, H.M. Aljohani, A.S. Alghamdi, A. Babar, H.W. Gómez, A New One-Parameter Discrete Exponential Distribution: Properties, Inference, and Applications to COVID-19 Data, J. King Saud Univ. - Sci. 34 (2022), 102199. https://doi.org/10.1016/j.jksus.2022.102199.
- M. Ahsan-ul-Haq, M.U. Farooq, M. Nagy, A.H. Mansi, et al. A New Flexible Distribution: Statistical Inference with Application, AIP Adv. 14 (2024), 035030. https://doi.org/10.1063/5.0189404.
- A.M. Abd Al-Fattah, A.A. EL-Helbawy, G.R. AL-Dayian, Inverted Kumaraswamy Distribution: Properties and Estimation, Pak. J. Stat. 33 (2017), 37–61.
- I.W. Burr, Cumulative Frequency Functions, Ann. Math. Stat. 13 (1942) 215–232.
- S. Sen, S.S. Maiti, N. Chandra, The Xgamma Distribution: Statistical Properties and Application, J. Mod. Appl. Stat. Meth. 15 (2016), 774–788. https://doi.org/10.22237/jmasm/1462077420.
- M. Ahsan-ul-Haq, Statistical Analysis of Haq Distribution: Estimation and Applications, Pakistan J. Stat. 38 (2022) 473–490.
- M.E. Ghitany, B. Atieh, S. Nadarajah, Lindley Distribution and Its Application, Math. Comp. Simul. 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007.
- M.D. Nichols, W.J. Padgett, A Bootstrap Control Chart for Weibull Percentiles, Qual. Reliab. Eng. Int. 22 (2006), 141–151. https://doi.org/10.1002/qre.691.
- R. Al-Aqtash, C. Lee, F. Famoye, Gumbel-Weibull Distribution: Properties and Applications, J. Mod. Appl. Stat. Meth. 13 (2014), 201–225. https://doi.org/10.22237/jmasm/1414815000.