Generalised Ulam-Hyers Stability Analysis for System of Additive Functional Equation in Fuzzy and Random Normed Spaces: Direct and Fixed Point Approach

Main Article Content

P. Agilan, K. Julietraja, Sarah Aljohani, Nabil Mlaiki

Abstract

In this article, a new system of Functional Equations is proposed. The Ulam-Hyers stability of this class of equations is investigated using the product, sum, and mixed product-sum of powers of norms, as well as the general control function. The stability analysis is carried out in random and fuzzy normed spaces using fixed point and direct methods. One of the unique and interesting aspects of this study is that, three new and different kinds of FEs have been introduced and the stability analysis is derived for all three equations simultaneously.

Article Details

References

  1. J. Brzd ˛ek, E. El-hady, W. Förg-Rob, Z. Le´sniak, A Note on Solutions of a Functional Equation Arising in a Queuing Model for a LAN Gateway, Aequat. Math. 90 (2016), 671–681. https://doi.org/10.1007/s00010-016-0421-3.
  2. E. El-hady, J. Brzd ˛ek, H. Nassar, On the Structure and Solutions of Functional Equations Arising from Queueing Models, Aequat. Math. 91 (2017), 445–477. https://doi.org/10.1007/s00010-017-0471-1.
  3. E.-S. El-Hady, W. Forg-Rob, H. Nassar, On a Functional Equation Arising from a Network Model, Appl. Math. Inf. Sci. 11 (2017), 363–372. https://doi.org/10.18576/amis/110203.
  4. L. Aiemsomboon, W. Sintunavarat, On a New Type of Stability of a Radical Quadratic Functional Equation Using Brzdek’s Fixed Point Theorem, Acta Math. Hung. 151 (2017), 35–46. https://doi.org/10.1007/s10474-016-0666-2.
  5. Z. Alizadeh, A.G. Ghazanfari, On the Stability of a Radical Cubic Functional Equation in Quasi-β-Spaces, J. Fixed Point Theory Appl. 18 (2016), 843–853. https://doi.org/10.1007/s11784-016-0317-9.
  6. M. Almahalebi, A. Chahbi, Approximate Solution of P-Radical Functional Equation in 2-Banach Spaces, Acta Math. Sci. 39 (2019), 551–566. https://doi.org/10.1007/s10473-019-0218-2.
  7. I. EL-Fassi, Solution and Approximation of Radical Quintic Functional Equation Related to Quintic Mapping in Quasi-β-Banach Spaces, Rev. Real Acad. Cienc. Exactas, Fís. Nat. Ser. A. Mat. 113 (2019), 675–687. https://doi.org/10.1007/s13398-018-0506-z.
  8. E. Guariglia, K. Tamilvanan, On the Stability of Radical Septic Functional Equations, Mathematics 8 (2020), 2229. https://doi.org/10.3390/math8122229.
  9. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
  10. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  11. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1.
  12. P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211.
  13. P. Debnath, N. Konwar, S. Radenovi´c, eds., Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences, Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0.
  14. V. Todorcevic, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-22591-9.
  15. Y.J. Cho, M. Jleli, M. Mursaleen, B. Samet, C. Vetro, eds., Advances in Metric Fixed Point Theory and Applications, Springer, Singapore, 2021. https://doi.org/10.1007/978-981-33-6647-3.
  16. J. Brzdek, K. Ciepli ´nski, On a Fixed Point Theorem in 2-Banach Spaces and Some of Its Applications, Acta Math. Sci. 38 (2018), 377–390. https://doi.org/10.1016/S0252-9602(18)30755-0.
  17. J. Brzd ˛ek, L. C ˘adariu, K. Ciepli ´nski, Fixed Point Theory and the Ulam Stability, J. Function Spaces 2014 (2014), 829419. https://doi.org/10.1155/2014/829419.
  18. D. Mihe¸t, R. Saadati, On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces, Appl. Math. Lett. 24 (2011), 2005–2009. https://doi.org/10.1016/j.aml.2011.05.033.
  19. H.M. Kim, I.S. Chang, E. Son, Stability of Cauchy Additive Functional Equation in Fuzzy Banach Spaces, Math. Ineq. Appl. 16 (2013), 1123–1136. https://doi.org/10.7153/mia-16-87.
  20. E. Baktash, Y. Cho, M. Jalili, R. Saadati, S. Vaezpour, On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces, J. Ineq. Appl. 2008 (2008), 902187. https://doi.org/10.1155/2008/902187.
  21. A. Ghaffari, A. Alinejad, Stabilities of Cubic Mappings in Fuzzy Normed Spaces, Adv. Diff. Equ. 2010 (2010), 150873. https://doi.org/10.1155/2010/150873.
  22. K. Ravi, B.V. Senthil Kumar, Fuzzy Stability of Generalized Square Root Functional Equation in Several Variables: A Fixed Point Approach, Int. J. Anal. Appl. 5 (2014), 10–19.
  23. A. Pasupathi, J. Konsalraj, N. Fatima, V. Velusamy, N. Mlaiki, N. Souayah, Direct and Fixed-Point Stability–Instability of Additive Functional Equation in Banach and Quasi-Beta Normed Spaces, Symmetry 14 (2022), 1700. https://doi.org/10.3390/sym14081700.
  24. P. Agilan, K. Julietraja, N. Mlaiki, A. Mukheimer, Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT), Symmetry 14 (2022), 2454. https://doi.org/10.3390/sym14112454.
  25. P. Agilan, M.M.A. Almazah, K. Julietraja, A. Alsinai, Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces, Mathematics 11 (2023), 681. https://doi.org/10.3390/math11030681.
  26. P. Agilan, K. Julietraja, M.M.A. Almazah, A. Alsinai, Stability Analysis of a New Class of Series Type Additive Functional Equation in Banach Spaces: Direct and Fixed Point Techniques, Mathematics 11 (2023), 887. https://doi.org/10.3390/math11040887.
  27. A. Aloqaily, P. Agilan, K. Julietraja, S. Annadurai, N. Mlaiki, A Novel Stability Analysis of Functional Equation in Neutrosophic Normed Spaces, Bound. Value Probl. 2024 (2024), 47. https://doi.org/10.1186/s13661-024-01854-2.
  28. P. Agilan, K. Julietraja, B. Kanimozhi, A. Alsinai, Hyers Stability of AQC Functional Equation, Dyn. Contin. Discr. Impuls. Syst. Ser. B: Appl. Algor. 31 (2024), 63–75.
  29. S.A.A. AL-Ali, M. Almahalebi, Y. Elkettani, Stability of a General P-Radical Functional Equation Related to Additive Mappings in 2-Banach Spaces, Proyecciones (Antofagasta) 40 (2021), 49–71. https://doi.org/10.22199/issn.0717-6279-2021-01-0004.
  30. T. Bag, S.K. Samanta, Finite Dimensional Fuzzy Normed Linear Spaces, 6 (2013), 271–283.
  31. A.K. Mirmostafaee, M.S. Moslehian, Fuzzy Versions of Hyers–Ulam–Rassias Theorem, Fuzzy Sets Syst. 159 (2008), 720–729. https://doi.org/10.1016/j.fss.2007.09.016.
  32. A.K. Mirmostafaee, M. Mirzavaziri, M.S. Moslehian, Fuzzy Stability of the Jensen Functional Equation, Fuzzy Sets Syst. 159 (2008), 730–738. https://doi.org/10.1016/j.fss.2007.07.011.
  33. A.K. Mirmostafaee, M.S. Moslehian, Fuzzy Approximately Cubic Mappings, Inf. Sci. 178 (2008), 3791–3798. https://doi.org/10.1016/j.ins.2008.05.032.
  34. A.K. Mirmostafaee, M.S. Moslehian, Fuzzy Almost Quadratic Functions, Results Math. 52 (2008), 161–177. https://doi.org/10.1007/s00025-007-0278-9.
  35. J. B. Diaz, B. Margolis, A Fixed Point Theorem of the Alternative, for Contractions on a Generalized Complete Metric Space, Bull. Amer. Math. Soc. 74 (1968), 305–309.
  36. S.S. Chang, Y.J. Cho, S.M. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Huntington, 2001.
  37. B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland Publishing, New York, 1983.
  38. A.N. Sherstnev, On the Notion of a Random Normed Space, Dokl. Akad. Nauk SSSR 149 (1963), 280–283.
  39. O. Hadzic, E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Springer, Dordrecht, 2001. https://doi.org/10.1007/978-94-017-1560-7.
  40. O. Hadzic, E. Pap, M. Budincevic, Countable Extension of Triangular Norms and their Applications to the Fixed Point Theory in Probabilistic Metric Spaces, Kybernetika, 38 (2002), 363–382.