Bipolar Fuzzy Magnified Translation of a Lattice

Main Article Content

U. Venkata Kalyani, Aiyared Iampan, T. Eswarlal

Abstract

In this article, we introduce the bipolar fuzzy (BF) level subsets of a lattice, and we prove the characterisation BF level subset B in terms of L forms a bipolar fuzzy lattice (BFL) and a bipolar fuzzy ideal (BFI). We show that if B forms a BFL of L, then the support set Supp(B) is a crisp sublattice of L. Also, we show that the converse necessarily does not hold in general, and we also proved the results for BFI. Moreover, we introduce and explore the concept of bipolar fuzzy magnified translation (BFMT) of a BFS. Also, we characterize a BFL and a BFI in terms of a BFMT. We show that the homomorphic image and pre-image of a BFMT of a BFL is also a BFL, and the BFMT of a BFI is also a BFI.

Article Details

References

  1. N. Ajmal, K.V. Thomas, Fuzzy Lattices, Inf. Sci. 79 (1994), 271–291. https://doi.org/10.1016/0020-0255(94)90124-4.
  2. M.S. Anitha, K.L. Muruganantha Prasad, K. Arjunan, Notes on Bipolar-Valued Fuzzy Subgroups of a Group, Bull. Soc. Math. Serv. Standards 7 (2013), 40–45. https://doi.org/10.18052/www.scipress.com/BSMaSS.7.40.
  3. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3.
  4. S. Boudaoud, S. Milles, L. Zedam, Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice, Discuss. Math. - Gen. Algebra Appl. 40 (2020), 75. https://doi.org/10.7151/dmgaa.1325.
  5. H. Bustince, P. Burillo, Vague Sets are Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 79 (1996), 403–405. https://doi.org/10.1016/0165-0114(95)00154-9.
  6. B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002. https://doi.org/10.1017/CBO9780511809088.
  7. W.L. Gau, D.J. Buehrer, Vague Sets, IEEE Trans. Syst. Man Cybern. 23 (1993), 610–614. https://doi.org/10.1109/21.229476.
  8. Y.B. Jun, H.S. Kim, K.J. Lee, Bipolar Fuzzy Translations in BCK/BCI-Algebras, J. Chungcheong Math. Soc. 22 (2009), 399–408.
  9. U.V. Kalyani, T. Eswarlal, K.V.N. Rao, A. Iampan, Bipolar Fuzzy Magnified Translations in Groups, Int. J. Anal. Appl. 20 (2022), 55. https://doi.org/10.28924/2291-8639-20-2022-55.
  10. K.M. Lee, Bipolar Valued Fuzzy Sets and Their Applications, in: Proceedings of International Conference on Intelligent Technologies, Bangkok, 307-312, 2000.
  11. S.K. Majumder, S.K. Sardar, Fuzzy Magnified Translation on Groups, J. Math., North Bengal Univ. 1 (2008), 117-124.
  12. S. Milles, L. Zedam, E. Rak, Characterizations of Intuitionistic Fuzzy Ideals and Filters Based on Lattice Operations, J. Fuzzy Set Valued Anal. 2017 (2017), 143–159. https://doi.org/10.5899/2017/jfsva-00399.
  13. S. Milles, The Lattice of Intuitionistic Fuzzy Topologies generated by Intuitionistic Fuzzy Relations, Appl. Appl. Math.: Int. J. 15 (2020), 942-956.
  14. B. NageswaraRao, N. Ramakrishna, T. Eswarlal, Vague Lattices, Stud. Rosenthaliana 12 (2020), 191–202.
  15. R.P. Rao, V.S. Kumar, A.P. Kumar, Rough Vague Lattices, J. Xi’an Univ. Architect. Technol. 9 (2019), 115–124.
  16. R. Anggraenil, Bipolar Fuzzy Translation, Extention, and Multiplication on Bipolar Anti Fuzzy Ideals of K-Algebras, Amer. J. Eng. Res. 8 (2019), 69–78.
  17. S.K. Sardar, S.K. Majumder, P. Pal, Bipolar Valued Fuzzy Translation in Semigroups, Math. Aeterna, 2 (2012), 597–607.
  18. P.K. Sarma, On Intuitionistic Fuzzy Magnified Translation in Groups, Int. J. Math. Sci. Appl. 2 (2012), 139-146.
  19. K.V. Thomas, L.S. Nair, Intuitionistic Fuzzy Sublattices and Ideals, Fuzzy Inf. Eng. 3 (2011), 321–331. https://doi.org/10.1007/s12543-011-0086-5.
  20. N. Udten, N. Songseang, A. Iampan, Translation and Density of a Bipolar-Valued Fuzzy Set in UP-Algebras, Ital. J. Pure Appl. Math. 41 (2019), 469-496.
  21. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  22. H. Zhang, Q. Li, Intuitionistic Fuzzy Filter Theory on Residuated Lattices, Soft Comput. 23 (2019), 6777–6783. https://doi.org/10.1007/s00500-018-3647-2.
  23. H.J. Zimmermann, Fuzzy Set Theory–and Its Applications, Kluwer Academic Publishers, Boston, 1991.