Approximate Solutions of the Coupled M-Truncated Fractional mKdV System Using the Adomian Decomposition Technique

Main Article Content

Khalid A. Alsatami

Abstract

This manuscript employs the Adomian decomposition technique (ADT) to develop solutions for the fractional space-time nonlinear mKdV system, incorporating an M-truncated fractional order and supposed initial conditions. The technique yields a power series expansion solution without the need for linearization, weak nonlinear assumptions, or perturbation theory. Software such as Maple or Mathematica was utilized to compute the Adomian formulas for the solution expansion. This technique can also be utilized for a range of nonlinear fractional-order models in mathematical physics. A graphical analysis is provided to demonstrate the behavior of Adomian solutions and how variations in non-integer order values influence the results. The technique is straightforward, clear, and widely applicable to other nonlinear fractional problems in both physics and mathematics. It is believed that these studies significantly advance our understanding of the nonlinear coupled fractional mKdV system and its potential applications in physics and engineering.

Article Details

References

  1. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.
  2. Z.I.A. Al-Muhiameed, E.A.B. Abdel-Salam, Generalized Hyperbolic Function Solution to a Class of Nonlinear Schrödinger‐Type Equations, J. Appl. Math. 2012 (2012), 265348. https://doi.org/10.1155/2012/265348.
  3. S.A. El-Shehawy, E. A-B. Abdel-Salam, The q-Deformed Hyperbolic Secant Family, Int. J. Appl. Math. Stat. 29 (2012), 51-62.
  4. I.A. Hassanien, R.A. Zait, E.A.-B. Abdel-Salam, Multicnoidal and Multitravelling Wave Solutions for Some Nonlinear Equations of Mathematical Physics, Phys. Scripta 67 (2003), 457–463. https://doi.org/10.1238/Physica.Regular.067a00457.
  5. A.A. Kilany, S.M. Abo-Dahab, A.M. Abd-Alla, E.A.-B. Abdel-Salam, Non-Integer Order Analysis of Electro-Magneto-Thermoelastic with Diffusion and Voids Considering Lord–Shulman and Dual-Phase-Lag Models with Rotation and Gravity, Waves Rand. Complex Media (2022), 1–31. https://doi.org/10.1080/17455030.2022.2092663.
  6. B. Zhang, X.L. Zhang, C.Q. Dai, Discussions on Localized Structures Based on Equivalent Solution with Different Forms of Breaking Soliton Model, Nonlinear Dyn. 87 (2017), 2385–2393. https://doi.org/10.1007/s11071-016-3197-z.
  7. E. Fan, Soliton Solutions for a Generalized Hirota–Satsuma Coupled KdV Equation and a Coupled MKdV Equation, Phys. Lett. A 282 (2001), 18–22. https://doi.org/10.1016/S0375-9601(01)00161-X.
  8. C.-Q. Dai, Y. Fan, N. Zhang, Re-Observation on Localized Waves Constructed by Variable Separation Solutions of (1+1)-Dimensional Coupled Integrable Dispersionless Equations via the Projective Riccati Equation Method, Appl. Math. Lett. 96 (2019), 20–26. https://doi.org/10.1016/j.aml.2019.04.009.
  9. J.-H. He, M.A. Abdou, New Periodic Solutions for Nonlinear Evolution Equations Using Exp-Function Method, Chaos Solitons Fractals 34 (2007), 1421–1429. https://doi.org/10.1016/j.chaos.2006.05.072.
  10. W. Malfliet, Solitary Wave Solutions of Nonlinear Wave Equations, Amer. J. Phys. 60 (1992), 650–654. https://doi.org/10.1119/1.17120.
  11. S. Zhang, T. Xia, A Generalized F-Expansion Method and New Exact Solutions of Konopelchenko–Dubrovsky Equations, Appl. Math. Comp. 183 (2006), 1190–1200. https://doi.org/10.1016/j.amc.2006.06.043.
  12. E.A.-B. Abdel-Salam, Periodic Structures Based on the Symmetrical Lucas Function of the (2+1)-Dimensional Dispersive Long-Wave System, Z. Naturforsch. A 63 (2008), 671–678. https://doi.org/10.1515/zna-2008-10-1110.
  13. G. Adomian, The Decomposition Method, Kluwer Academic Publication, Boston, 1994.
  14. A.M. Wazwaz, A Comparison between Adomian Decomposition Method and Taylor Series Method in the Series Solutions, Appl. Math. Comp. 97 (1998), 37–44. https://doi.org/10.1016/S0096-3003(97)10127-8.
  15. A. Sadighi, D.D. Ganji, Exact Solutions of Laplace Equation by Homotopy-Perturbation and Adomian Decomposition Methods, Phys. Lett. A 367 (2007), 83–87. https://doi.org/10.1016/j.physleta.2007.02.082.
  16. R. Rach, On the Adomian (Decomposition) Method and Comparisons with Picard’s Method, J. Math. Anal. Appl. 128 (1987), 480–483. https://doi.org/10.1016/0022-247X(87)90199-5.
  17. S.O. Adesanya, E.S. Babadipe, S.A. Arekete, A New Result on Adomian Decomposition Method for Solving Bratu’s Problem. Math. Theory Model. 3 (2013), 116–120.
  18. S.O. Adesanya, Linear Stability Analysis of a Plane-Poiseuille Hydromagnetic Flow Using Adomian Decomposition Method, UPB Sci. Bull. 75 (2013), 99–106.
  19. I. Ahmed, C. Mu, F. Zhang, Exact Solution of the Biswas–Milovic Equation by Adomian Decomposition Method, Int. J. Appl. Math. Res. 2 (2013), 418–422.
  20. A.A. Aswhad, A.F. Jaddoa, The Approximate Solution of Newell–Whitehead–Segel and Fisher Equations Using the Adomian Decomposition Method, Al-Mustansiriyah J. Sci. 25 (2014), 45–56.
  21. A.-M. Wazwaz, R. Rach, L. Bougoffa, Dual Solutions for Nonlinear Boundary Value Problems by the Adomian Decomposition Method, Int. J. Numer. Meth. Heat Fluid Flow 26 (2016), 2393–2409. https://doi.org/10.1108/HFF-10-2015-0439.
  22. L. Bougoffa, R. Rach, A.-M. Wazwaz, On Solutions of Boundary Value Problem for Fourth-Order Beam Equations, Math. Model. Anal. 21 (2016), 304–318. https://doi.org/10.3846/13926292.2016.1155507.
  23. A. Alshaery, A. Ebaid, Accurate Analytical Periodic Solution of the Elliptical Kepler Equation Using the Adomian Decomposition Method, Acta Astron. 140 (2017), 27–33. https://doi.org/10.1016/j.actaastro.2017.07.034.
  24. A.K. Jaradat, A.A. Obeidat, M.A. Gharaibeh, M.K.H. Qaseer, Adomian Decomposition Approach to Solve the Simple Harmonic Quantum Oscillator, Int. J. Appl. Eng. Res. 13 (2018), 1056–1059.
  25. U. Umesh, M. Kumar, Numerical Solution of Lane-Emden Type Equations Using Adomian Decomposition Method with Unequal Step-Size Partitions, Eng. Comp. 38 (2021), 1–18. https://doi.org/10.1108/EC-02-2020-0073.
  26. Umesh, M. Kumar, Numerical Solution of Singular Boundary Value Problems Using Advanced Adomian Decomposition Method, Eng. Comp. 37 (2021), 2853–2863. https://doi.org/10.1007/s00366-020-00972-6.
  27. Umesh, M. Kumar, Approximate Solution of Singular IVPs of Lane–Emden Type and Error Estimation via Advanced Adomian Decomposition Method, J. Appl. Math. Comp. 66 (2021), 527–542. https://doi.org/10.1007/s12190-020-01444-2.
  28. J. Alahmadi, B. Aldossary, E.A-B Abdel-Salam, Numerical Treatment of the Coupled Fractional mKdV Equations Based on the Adomian Decomposition Technique, Appl. Math. Inf. Sci. 18 (2024), 93–99. https://doi.org/10.18576/amis/180110.
  29. E.A.-B. Abdel-Salam, M.I. Nouh, E.A. Elkholy, Analytical Solution to the Conformable Fractional Lane-Emden Type Equations Arising in Astrophysics, Sci. Afr. 8 (2020), e00386. https://doi.org/10.1016/j.sciaf.2020.e00386.
  30. A. Choudhary, D. Kumar, J. Singh, A Fractional Model of Fluid Flow through Porous Media with Mean Capillary Pressure, J. Assoc. Arab Univ. Basic Appl. Sci. 21 (2016), 59–63. https://doi.org/10.1016/j.jaubas.2015.01.002.
  31. P.B. Béda, Dynamic Stability and Bifurcation Analysis in Fractional Thermodynamics, Contin. Mech. Thermodyn. 30 (2018), 1259–1265. https://doi.org/10.1007/s00161-018-0633-y.
  32. M.S. Aslam, M.A.Z. Raja, A New Adaptive Strategy to Improve Online Secondary Path Modeling in Active Noise Control Systems Using Fractional Signal Processing Approach, Signal Process. 107 (2015), 433–443. https://doi.org/10.1016/j.sigpro.2014.04.012.
  33. P. Agarwal, M. Chand, G. Singh, Certain Fractional Kinetic Equations Involving the Product of Generalized K-Bessel Function, Alexandria Eng. J. 55 (2016), 3053–3059. https://doi.org/10.1016/j.aej.2016.07.025.
  34. M. Chand, J.C. Prajapati, E. Bonyah, Fractional Integrals and Solution of Fractional Kinetic Equations Involving k -Mittag-Leffler Function, Trans. A. Razmadze Math. Inst. 171 (2017), 144–166. https://doi.org/10.1016/j.trmi.2017.03.003.
  35. Z.M. Odibat, S. Kumar, N. Shawagfeh, A. Alsaedi, T. Hayat, A Study on the Convergence Conditions of Generalized Differential Transform Method, Math. Meth. Appl. Sci. 40 (2017), 40–48. https://doi.org/10.1002/mma.3961.
  36. B.H. Lim, Y.H. Shin, U.J. Choi, Optimal Investment, Consumption and Retirement Choice Problem with Disutility and Subsistence Consumption Constraints, J. Math. Anal. Appl. 345 (2008), 109–122. https://doi.org/10.1016/j.jmaa.2008.04.011.
  37. E.A.-B. Abdel-Salam, E.A. Yousif, M.A. El-Aasser, Analytical Solution of the Space-Time Fractional Nonlinear Schrödinger Equation, Rep. Math. Phys. 77 (2016), 19–34. https://doi.org/10.1016/S0034-4877(16)30002-7.
  38. M.I. Nouh, E.A.-B. Abdel-Salam, Y.A. Azzam, Artificial Neural Network Approach for Relativistic Polytropes, Sci. Afr. 20 (2023), e01696. https://doi.org/10.1016/j.sciaf.2023.e01696.
  39. E. A-B. Abdel-Salam, M.S. Jazmati, H. Ahmad, Geometrical Study and Solutions for Family of Burgers-like Equation with Fractional Order Space Time, Alexandria Eng. J. 61 (2022), 511–521. https://doi.org/10.1016/j.aej.2021.06.032.
  40. Y.A. Azzam, E.A.-B. Abdel-Salam, M.I. Nouh, Artificial Neural Network Modeling of the Conformable Fractional Isothermal Gas Spheres, Rev. Mex. Astron. Astrofis. 57 (2021), 189–198. https://doi.org/10.22201/ia.01851101p.2021.57.01.14.
  41. E.A. ‐B. Abdel‐Salam, M.F. Mourad, Fractional Quasi AKNS‐technique for Nonlinear Space–Time Fractional Evolution Equations, Math. Methods Appl. Sci. 42 (2019), 5953–5968. https://doi.org/10.1002/mma.5633.
  42. G.F. Hassan, E.A. Abdel‐Salam, R.A. Rashwan, Approximation of Functions by Complex Conformable Derivative Bases in Fréchet Spaces, Math. Methods Appl. Sci. 46 (2023), 2636–2650. https://doi.org/10.1002/mma.8664.
  43. M. Zayed, G. Hassan, E.A. Abdel‐Salam, On the Convergence of Series of Fractional Hasse Derivative Bases in Fréchet Spaces, Math. Methods Appl. Sci. 47 (2024), 8366–8384. https://doi.org/10.1002/mma.10018.
  44. J.V. da C. Sousa, E.C. de Oliveira, A New Truncated M-Fractional Derivative Type Unifying Some Fractional Derivative Types with Classical Properties, Int. J. Anal. Appl. 16 (2018), 83–96. https://doi.org/10.28924/2291-8639-16-2018-83.
  45. A.A. Soliman, M.A. Abdou, The Decomposition Method for Solving the Coupled Modified KdV Equations, Math. Comput. Model. 47 (2008), 1035–1041. https://doi.org/10.1016/j.mcm.2007.05.012.