Exploring Double Composed Partial Metric Spaces: A Novel Approach to Fixed Point Theorems

Main Article Content

Fatima M. Azmi, Irshad Ayoob, Nabil Mlaiki

Abstract

This paper innovatively extends partial metric spaces to introduce double composed partial metric space (DCPMS). Unlike traditional metrics, DCPMS replaces the triangle inequality with a nuanced form, integrating control functions into the metric. Building upon Ayoob et al.’s work, this novel generalization focuses on establishing fixed point theorems for DCPMS, contributing to the evolving landscape of mathematical analysis in this unique domain.

Article Details

References

  1. A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sahmim, W. Shatanawi, On Common Fixed Points for α-F-Contractions and Applications, J. Nonlinear Sci. Appl. 09 (2016), 3445–3458. https://doi.org/10.22436/jnsa.009.05.128.
  2. W. Shatanawi, Z. Mustafa, N. Tahat, Some Coincidence Point Theorems for Nonlinear Contraction in Ordered Metric Spaces, Fixed Point Theory Appl. 2011 (2011), 68. https://doi.org/10.1186/1687-1812-2011-68.
  3. W. Shatanawi, Some Fixed Point Results for a Generalized Ψ-Weak Contraction Mappings in Orbitally Metric Spaces, Chaos Solitons Fractals 45 (2012), 520–526. https://doi.org/10.1016/j.chaos.2012.01.015.
  4. I. Ayoob, N.Z. Chuan, N. Mlaiki, Double-Composed Metric Spaces, Mathematics 11 (2023), 1866. https://doi.org/10.3390/math11081866.
  5. N. Souayah, M. Mrad, On Fixed-Point Results in Controlled Partial Metric Type Spaces with a Graph, Mathematics 8 (2019), 33. https://doi.org/10.3390/math8010033.
  6. S. Czerwik, Contraction Mappings in b-Metric Spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5–11. http://dml.cz/dmlcz/120469.
  7. I.A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal. 30 (1989), 26–37.
  8. T. Kamran, M. Samreen, Q. Ul Ain, A Generalization of b-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
  9. N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics 6 (2018), 194. https://doi.org/10.3390/math6100194.
  10. D. Lateef, Kannan Fixed Point Theorem in C-Metric Spaces, J. Math. Anal. 10 (2019), 34–40.
  11. J. Ahmad, A.E. Al-Mazrooei, H. Aydi, M. De La Sen, On Fixed Point Results in Controlled Metric Spaces, J. Function Spaces 2020 (2020), 2108167. https://doi.org/10.1155/2020/2108167.
  12. T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
  13. N. Mlaiki, Double Controlled Metric-like Spaces, J. Ineq. Appl. 2020 (2020), 189. https://doi.org/10.1186/s13660-020-02456-z.
  14. G.E. Hardy, T.D. Rogers, A Generalization of a Fixed Point Theorem of Reich, Canadian Math. Bull. 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0.
  15. F.M. Azmi, Generalized Contraction Mappings in Double Controlled Metric Type Space and Related Fixed Point Theorems, J. Ineq. Appl. 2023 (2023), 87. https://doi.org/10.1186/s13660-023-02999-x.
  16. S.G. Matthews, Partial Metric Topology, Ann. N. Y. Acad. Sci. 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x.
  17. F.M. Azmi, New Fixed Point Results in Double Controlled Metric Type Spaces with Applications, AIMS Math. 8 (2023), 1592–1609. https://doi.org/10.3934/math.2023080.
  18. M.S. Aslam, M.S.R. Chowdhury, L. Guran, I. Manzoor, T. Abdeljawad, D. Santina, N. Mlaiki, Complex-Valued Double Controlled Metric like Spaces with Applications to Fixed Point Theorems and Fredholm Type Integral Equations, AIMS Math. 8 (2023), 4944–4963. https://doi.org/10.3934/math.2023247.
  19. M.B. Zada, M. Sarwar, T. Abdeljawad, A. Mukheimer, Coupled Fixed Point Results in Banach Spaces with Applications, Mathematics 9 (2021), 2283. https://doi.org/10.3390/math9182283.
  20. N. Alamgir, Q. Kiran, H. Aydi, A. Mukheimer, A Mizoguchi–Takahashi Type Fixed Point Theorem in Complete Extended b-Metric Spaces, Mathematics 7 (2019), 478. https://doi.org/10.3390/math7050478.