Fractional-Order Mathematical Modeling of Breast Cancer: Comparing Adaptive Immune Responses and Estrogen Dynamics with Experimental Data

Main Article Content

Abeer S. Alnahdi, Muhammad Idrees

Abstract

Breast cancer is a significant global health concern that requires innovative approaches to understand its behavior and improve treatment strategies. This paper introduces a new fractional-order mathematical model to explain the complex dynamics of breast cancer progression, including adaptive immune responses and estrogen dynamics. Utilizing Caputo fractional derivatives, our model reveals insights into the impact of fractional-order dynamics on cancer cell populations. Simulation results demonstrate a notable increase in cell populations with higher fractional orders, suggesting heightened aggressiveness, while lower orders correspond to subdued progression. Unlike traditional integer-order models, fractional-order derivatives offer a more nuanced depiction of nonlinear dynamics, crucial for capturing the complexities of cancer progression. Importantly, our findings underscore the potential clinical relevance of fractional-order models in informing personalized treatment strategies, particularly through the modulation of estrogen levels. By integrating treatment considerations, such as hormone therapy, our model holds promise for advancing precision medicine approaches tailored to individual patient characteristics.

Article Details

References

  1. M. Akram, M. Iqbal, M. Daniyal, A.U. Khan, Awareness and Current Knowledge of Breast Cancer, Biol. Res. 50 (2017), 33. https://doi.org/10.1186/s40659-017-0140-9.
  2. S. Lei, R. Zheng, S. Zhang, S. Wang, R. Chen, K. Sun, H. Zeng, J. Zhou, W. Wei, Global Patterns of Breast Cancer Incidence and Mortality: A Population-based Cancer Registry Data Analysis from 2000 to 2020, Cancer Commun. 41 (2021), 1183–1194. https://doi.org/10.1002/cac2.12207.
  3. Y. Kim, K.Y. Yoo, M.T. Goodman, Differences in Incidence, Mortality and Survival of Breast Cancer by Regions and Countries in Asia and Contributing Factors, Asian Pac. J. Cancer Prev. 16 (2015), 2857–2870. https://doi.org/10.7314/apjcp.2015.16.7.2857.
  4. E. Mallon, The Basic Pathology of Human Breast Cancer, J. Mammary Gland Biol. Neoplasia 5 (2000), 139–163. https://doi.org/10.1023/a:1026439204849.
  5. K. Polyak, Breast Cancer: Origins and Evolution, J. Clin. Invest. 117 (2007), 3155–3163. https://doi.org/10.1172/jci33295.
  6. E.A. McSherry, S. Donatello, A.M. Hopkins, S. McDonnell, Common Molecular Mechanisms of Mammary Gland Development and Breast Cancer: Molecular Basis of Invasion in Breast Cancer, Cell. Mol. Life Sci. 64 (2007), 3201–3218. https://doi.org/10.1007/s00018-007-7388-0.
  7. U. Testa, G. Castelli, E. Pelosi, Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments, Med. Sci. 8 (2020), 18. https://doi.org/10.3390/medsci8010018.
  8. G. Jerusalem, J. Collignon, H. Schroeder, L. Lousberg, Triple-Negative Breast Cancer: Treatment Challenges and Solutions, Breast Cancer: Targets Therapy 8 (2016), 93–107. https://doi.org/10.2147/BCTT.S69488.
  9. D.G. DeNardo, L.M. Coussens, Inflammation and Breast Cancer. Balancing Immune Response: Crosstalk between Adaptive and Innate Immune Cells during Breast Cancer Progression, Breast Cancer Res. 9 (2007), 212. https://doi.org/10.1186/bcr1746.
  10. D. Martorelli, E. Muraro, A. Merlo, R. Turrini, A. Rosato, R. Dolcetti, Role of CD4+ Cytotoxic T Lymphocytes in the Control of Viral Diseases and Cancer, Int. Rev. Immunol. 29 (2010), 371–402. https://doi.org/10.3109/08830185.2010.489658.
  11. S. Mocellin, E. Wang, F.M. Marincola, Cytokines and Immune Response in the Tumor Microenvironment, J. Immunotherapy 24 (2001), 392–407.
  12. N.R. Maimela, S. Liu, Y. Zhang, Fates of CD8+ T Cells in Tumor Microenvironment, Comp. Struct. Biotechnol. J. 17 (2019), 1–13. https://doi.org/10.1016/j.csbj.2018.11.004.
  13. C. Gu-Trantien, S. Loi, S. Garaud, C. Equeter, M. Libin, A. De Wind, et al. CD4+ Follicular Helper T Cell Infiltration Predicts Breast Cancer Survival, J. Clin. Invest. 123 (2013), 2873–2892. https://doi.org/10.1172/JCI67428.
  14. H.I. Jacobson, J.A. Bennett, G.J. Mizejewski, Inhibition of Estrogen-Dependent Breast Cancer Growth by a Reaction Product of α-Fetoprotein and Estradiol, Cancer Res. 50 (1990), 415–420.
  15. P. Bhardwaj, C.C. Au, A. Benito-Martin, H. Ladumor, S. Oshchepkova, R. Moges, K.A. Brown, Estrogens and Breast Cancer: Mechanisms Involved in Obesity-Related Development, Growth and Progression, J. Steroid Biochem. Mol. Biol. 189 (2019), 161–170. https://doi.org/10.1016/j.jsbmb.2019.03.002.
  16. L.R. Nelson, S.E. Bulun, Estrogen Production and Action, J. Amer. Acad. Dermatol. 45 (2001), S116–S124. https://doi.org/10.1067/mjd.2001.117432.
  17. G.A. Colditz, B.A. Rosner, W.Y. Chen, M.D. Holmes, S.E. Hankinson, Risk Factors for Breast Cancer According to Estrogen and Progesterone Receptor Status, J. Nat. Cancer Inst. 96 (2004), 218–228. https://doi.org/10.1093/jnci/djh025.
  18. A.M. Jarrett, M.J. Bloom, W. Godfrey, A.K. Syed, D.A. Ekrut, L.I. Ehrlich, T.E. Yankeelov, A.G. Sorace, Mathematical Modelling of Trastuzumab-Induced Immune Response in an in Vivo Murine Model of HER2+ Breast Cancer, Math. Med. Biol.: J. IMA 36 (2019), 381–410. https://doi.org/10.1093/imammb/dqy014.
  19. H.C. Wei, Mathematical Modeling of Tumor Growth: The MCF-7 Breast Cancer Cell Line, Math. Biosci. Eng. 16 (2019), 6512–6535. https://doi.org/10.3934/mbe.2019325.
  20. L. Anderson, S. Jang, J. Yu, Qualitative Behavior of Systems of Tumor–CD4+ –Cytokine Interactions with Treatments, Math. Meth. Appl. Sci. 38 (2015), 4330–4344. https://doi.org/10.1002/mma.3370.
  21. S. Banerjee, R.R. Sarkar, Delay-Induced Model for Tumor–Immune Interaction and Control of Malignant Tumor Growth, Biosystems 91 (2008), 268–288. https://doi.org/10.1016/j.biosystems.2007.10.002.
  22. K.J. Mahasa, R. Ouifki, A. Eladdadi, L.D. Pillis, Mathematical Model of Tumor–Immune Surveillance, J. Theor. Biol. 404 (2016), 312–330. https://doi.org/10.1016/j.jtbi.2016.06.012.
  23. A. El-Gohary, Chaos and Optimal Control of Cancer Self-Remission and Tumor System Steady States, Chaos Solitons Fractals 37 (2008), 1305–1316. https://doi.org/10.1016/j.chaos.2006.10.060.
  24. A. El-Gohary, I.A. Alwasel, The Chaos and Optimal Control of Cancer Model with Complete Unknown Parameters, Chaos Solitons Fractals 42 (2009), 2865–2874. https://doi.org/10.1016/j.chaos.2009.04.028.
  25. V. Kuznetsov, I. Makalkin, M. Taylor, A. Perelson, Nonlinear Dynamics of Immunogenic Tumors: Parameter Estimation and Global Bifurcation Analysis, Bull. Math. Biol. 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5.
  26. D. Kirschner, J.C. Panetta, Modeling Immunotherapy of the Tumor - Immune Interaction, J. Math. Biol. 37 (1998), 235–252. https://doi.org/10.1007/s002850050127.
  27. M. Idrees, A. Alnahdi, M. Jeelani, Mathematical Modeling of Breast Cancer Based on the Caputo–Fabrizio FractalFractional Derivative, Fractal Fract. 7 (2023), 805. https://doi.org/10.3390/fractalfract7110805.
  28. H. Mohammadpoor, N. Eghbali, L. Sajedi, M. Nosrati Sahlan, Stability Analysis of Fractional Order Breast Cancer Model in Chemotherapy Patients with Cardiotoxicity by Applying LADM, Adv. Contin. Discr. Models 2024 (2024), 6. https://doi.org/10.1186/s13662-024-03800-z.
  29. S.G. Samko, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, 1993.
  30. M. Caputo, M. Fabrizio, A New Definition of Fractional Derivative Without Singular Kernel, Progr. Fract. Diff. Appl. 1 (2015), 73–85.
  31. R.A. Gatenby, The Potential Role of Transformation-Induced Metabolic Changes in Tumor-Host Interaction, Cancer Res. 55 (1995), 4151–4156.
  32. C. Mufudza, W. Sorofa, E.T. Chiyaka, Assessing the Effects of Estrogen on the Dynamics of Breast Cancer, Comp. Math. Meth. Med. 2012 (2012), 473572. https://doi.org/10.1155/2012/473572.
  33. Y. Dong, R. Miyazaki, Y. Takeuchi, et al. Mathematical Modeling on Helper T Cells in a Tumor Immune System, Discr. Contin. Dyn. Syst. - B 19 (2014), 55–72. https://doi.org/10.3934/dcdsb.2014.19.55.
  34. V. Valayannopoulos, F. Bajolle, J.B. Arnoux, S. Dubois, N. Sannier, et al. Successful Treatment of Severe Cardiomyopathy in Glycogen Storage Disease Type III With D,L-3-Hydroxybutyrate, Ketogenic and High-Protein Diet, Pediatric Res. 70 (2011), 638–641. https://doi.org/10.1203/PDR.0b013e318232154f.
  35. S. Nagl, The Role of Model Integration in Complex Systems Modelling: An Example from Cancer Biology, Springer, Berlin 2010.
  36. H. Dritschel, S. Waters, A. Roller, H. Byrne, A Mathematical Model of Cytotoxic and Helper T Cell Interactions in a Tumour Microenvironment, Lett. Biomath. 5 (2018), S36–S68. https://doi.org/10.30707/LiB5.2Dritschel.
  37. K.M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation, Springer, Singapore, 2019. https://doi.org/10.1007/978-981-15-0098-5.
  38. C. Li, C. Tao, On the Fractional Adams Method, Comp. Math. Appl. 58 (2009), 1573–1588. https://doi.org/10.1016/j.camwa.2009.07.050.
  39. M. Weilbeer, Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background, Papierflieger Clausthal-Zellerfeld, Germany, 2006.
  40. N.H. Tuan, H. Mohammadi, S. Rezapour, A Mathematical Model for COVID-19 Transmission by Using the Caputo Fractional Derivative, Chaos Solitons Fractals 140 (2020), 110107. https://doi.org/10.1016/j.chaos.2020.110107.
  41. N. Brünner, M. Spang-Thomsen, K. Cullen, The T61 Human Breast Cancer Xenograft: An Experimental Model of Estrogen Therapy of Breast Cancer, Breast Cancer Res. Treat. 39 (1996), 87–92. https://doi.org/10.1007/BF01806080.
  42. S.E. Wardell, A.P. Yllanes, C.A. Chao, Y. Bae, K.J. Andreano, et al. Pharmacokinetic and Pharmacodynamic Analysis of Fulvestrant in Preclinical Models of Breast Cancer to Assess the Importance of Its Estrogen Receptorα Degrader Activity in Antitumor Efficacy, Breast Cancer Res. Treat. 179 (2020), 67–77. https://doi.org/10.1007/s10549-019-05454-y.
  43. A.S. Alnahdi, M. Idrees, Nonlinear Dynamics of Estrogen Receptor-Positive Breast Cancer Integrating Experimental Data: A Novel Spatial Modeling Approach, Math. Biosci. Eng. 20 (2023), 21163–21185. https://doi.org/10.3934/mbe.2023936.
  44. M. Idrees, A. Sohail, Bio-Algorithms for the Modeling and Simulation of Cancer Cells and the Immune Response, Bio-Algor. Med-Syst. 17 (2021), 55–63. https://doi.org/10.1515/bams-2020-0054.