Estimation of Epidemiological Parameters for COVID-19 Cases in Burkina Faso Using African Vulture Optimization Algorithm (AVOA)

Main Article Content

Haoua Tinde, Adama Kiemtore, Wenddabo Olivier Sawadogo, Pengdewendé Ousséni Fabrice Ouedraogo, Ibrahim Zangré

Abstract

In this paper, we present a mathematical model that accounts for virus transmission through deceased individuals to simulate the dynamics of COVID-19 spread in Burkina Faso. The existence and uniqueness of the model’s solution have been proven. The basic reproduction number was calculated using the Jacobian determinant method. The stability of the disease-free and endemic equilibrium points was studied. To estimate the model parameters, we used African Vulture Optimization Algorithm (AVOA). We then used this algorithm to estimate the parameters of the developed model using daily reported COVID-19 cases in Burkina Faso from March 11 to April 20, 2020. The results obtained show that the proposed model is more realistic for simulating the spread of COVID-19 in Burkina Faso.

Article Details

References

  1. I. Korolev, Identification and Estimation of the SEIRD Epidemic Model for COVID-19, J. Econometrics 220 (2021), 63–85. https://doi.org/10.1016/j.jeconom.2020.07.038.
  2. B.S. Pujari, S. Shekatkar, Multi-City Modeling of Epidemics Using Spatial Networks: Application to 2019- nCov (COVID-19) Coronavirus in India, medRxiv 2020.03.13.20035386, (2020). https://doi.org/10.1101/2020.03.13.20035386.
  3. T. Zhang, Z. Li, Analysis of COVID-19 Epidemic Transmission Trend Based on a Time-Delayed Dynamic Model, Commun. Pure Appl. Anal. 22 (2023), 1–18. https://doi.org/10.3934/cpaa.2021088.
  4. R.K. Singh, M. Drews, M. De La Sen, M. Kumar, S.S. Singh, et al. Short-Term Statistical Forecasts of COVID-19 Infections in India, IEEE Access 8 (2020), 186932–186938. https://doi.org/10.1109/ACCESS.2020.3029614.
  5. R. Niu, E.W.M. Wong, Y.-C. Chan, M.A. Van Wyk, G. Chen, Modeling the COVID-19 Pandemic Using an SEIHR Model With Human Migration, IEEE Access 8 (2020), 195503–195514. https://doi.org/10.1109/ACCESS.2020.3032584.
  6. L. Alyami, S. Das, S. Townley, Bayesian Model Selection for COVID-19 Pandemic State Estimation Using Extended Kalman Filters: Case Study for Saudi Arabia, PLOS Glob. Public Health 4 (2024), e0003467. https://doi.org/10.1371/journal.pgph.0003467.
  7. H.B. Taboe, K.V. Salako, J.M. Tison, C.N. Ngonghala, R. Glèlè Kakaï, Predicting COVID-19 Spread in the Face of Control Measures in West Africa, Math. Biosci. 328 (2020), 108431. https://doi.org/10.1016/j.mbs.2020.108431.
  8. Y. Montcho, R. Nalwanga, P. Azokpota, J.T. Doumatè, B.E. Lokonon, V.K. Salako, M. Wolkewitz, R. Glèlè Kakaï, Assessing the Impact of Vaccination on the Dynamics of COVID-19 in Africa: A Mathematical Modeling Study, Vaccines 11 (2023), 857. https://doi.org/10.3390/vaccines11040857.
  9. A. Guiro, B. Koné, S. Ouaro, Mathematical Modelling of the Evolution Dynamics of the Coronavirus Disease 2019 (COVID-19) in Burkina Faso, in: B. Toni (Ed.), The Mathematics of Patterns, Symmetries, and Beauties in Nature, Springer International Publishing, Cham, 2021: pp. 79–95. https://doi.org/10.1007/978-3-030-84596-4_6.
  10. M. Loibner, C. Langner, P. Regitnig, G. Gorkiewicz, K. Zatloukal, Biosafety Requirements for Autopsies of Patients with COVID-19: Example of a BSL-3 Autopsy Facility Designed for Highly Pathogenic Agents, Pathobiology 88 (2021), 37–45. https://doi.org/10.1159/000513438.
  11. Bereavement Authority of Ontario, COVID-19: Ready...Together, (2022). https://thebao.ca/covid-19-update-links.
  12. British Columbia Centre for Disease Control, Deceased Persons, Provincial Guidance to Ensure the Safety of Workers Handling COVID-19 Suspected or Positive Decedents, (2020). http://www.bccdc.ca/health-professionals/clinical-resources/covid-19-care/deceased-persons.
  13. British Columbia Centre for Disease Control, British Columbia Ministry of Health, Safe Handling of Bodies of Deceased Persons With Suspected or Confirmed COVID-19 (2020). https://medicalstaff.islandhealth.ca/sites/default/files/covid-19/management-and-treatment/covid-safe-handling-suspected-confirmed-deceased-persons-bccdc.pdf
  14. A. Sadollah, H. Sayyaadi, A. Yadav, A dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithm, Appl. Soft Comp. 71 (2018), 747–782. https://doi.org/10.1016/j.asoc.2018.07.039.
  15. X. Xiong, S. Li, F. Wu, An enhanced neural network algorithm with quasi-oppositional-based and chaotic sinecosine learning strategies, Entropy 25 (2023), 1255. https://doi.org/10.3390/e25091255.
  16. H. Fahim, O.W. Sawadogo, N. Alaa, M. Guedda, An efficient identification of red blood cell equilibrium shape using neural networks, Eurasian J. Math. Comp. Appl. 9 (2021), 39–56.
  17. D.E. Goldberg, Real-coded genetic algorithms, virtual alphabets, and blocking, Complex Syst. 5 (1991), 139–167.
  18. A.K. Das, D.K. Pratihar, Solving engineering optimization problems using an improved real-coded genetic algorithm (IRGA) with directional mutation and crossover, Soft Comp. 25 (2021), 5455–5481. https://doi.org/10.1007/s00500-020-05545-9.
  19. R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems, Computer-Aided Design 43 (2011), 303–315. https://doi.org/10.1016/j.cad.2010.12.015.
  20. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  21. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: IEEE International Conference on Evolutionary Computation Proceedings, IEEE, Anchorage, 1998: pp. 69–73. https://doi.org/10.1109/ICEC.1998.699146.
  22. A. Kiemtore, W.O. Sawadogo, F. Aquel, H. Alaa, K.S. Somda, Mathematical modelling and numerical simulation of hepatitis B viral infection: the case of Burkina Faso, Eur. J. Pure Appl. Math. 17 (2024), 59–92. https://doi.org/10.29020/nybg.ejpam.v17i1.4987.
  23. A. Kiemtore, W.O. Sawadogo, I. Zangré, P.O.F. Ouedraogo, I. Mouaouia, Estimation of parameters for the mathematical model of the spread of hepatitis b in burkina faso using grey wolf optimizer, Int. J. Anal. Appl. 22 (2024), 48. https://doi.org/10.28924/2291-8639-22-2024-48.
  24. F. Aqel, H. Alaa, N.E. Alaa, Mathematical Model of Covid-19 Transmissibility During the Vaccination Period, Eurasian J. Math. Comput. Appl. 11 (2023), 4–28.
  25. I. Tao, T.R. Compaoré, B. Diarra, F. Djigma, T.M. Zohoncon, et al. Seroepidemiology of hepatitis B and C viruses in the general population of burkina faso, Hepat. Res. Treat. 2014 (2014), 781843. https://doi.org/10.1155/2014/781843.
  26. C. Castillo-Chavez, S. Blower, P. Van Den Driessche, D. Kirschner, A.-A. Yakubu, eds., Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory, Springer New York, 2002. https://doi.org/10.1007/978-1-4613-0065-6.
  27. O. Koutou, A.B. Diabaté, B. Sangaré, Mathematical analysis of the impact of the media coverage in mitigating the outbreak of COVID-19, Math. Comp. Simul. 205 (2023), 600–618. https://doi.org/10.1016/j.matcom.2022.10.017.
  28. X. Duan, S. Yuan, X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comp. 226 (2014), 528–540. https://doi.org/10.1016/j.amc.2013.10.073.
  29. C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A.A. Yakubu, eds., Mathematical approaches for emerging and reemerging infectious diseases: An introduction, Springer, New York, 2002.
  30. C. Castillo-Chavez, Z. Feng, Global stability of an age-structure model for tb and its applications to optimal vaccination strategies, Math. Biosci. 151 (1998), 135–154. https://doi.org/10.1016/S0025-5564(98)10016-0.
  31. A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol. 68 (2006), 615–626. https://doi.org/10.1007/s11538-005-9037-9.
  32. C. Bounkaicha, K. Allali, Y. Tabit, J. Danane, Global dynamic of spatio-temporal fractional order SEIR model, Math. Model. Comp. 10 (2023), 299–310.
  33. R.M. Anderson, R.M. Anderson, R.M.May, Infectious diseases of humans: dynamics and control, Oxford University Press, Oxford, 1991.
  34. National Institute of Statistics and Demography (INSD), General population and housing census, Burkina Faso: Fifth general census of population and housing of Burkina Faso, synthesis of final results, INSD, Ouagadougou, 2019.
  35. J.P. La Salle, The stability of dynamical systems, SIAM, 1976. https://doi.org/10.1137/1.9781611970432.
  36. V. Lakshmikantham, S. Leela, A.A. Martynyuk, Stability analysis of nonlinear systems, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-27200-9.
  37. A. Khan, R. Zarin, I. Ahmed, A. Yusuf, U.W. Humphries, Numerical and theoretical analysis of rabies model under the harmonic mean type incidence rate, Results Phys. 29 (2021), 104652. https://doi.org/10.1016/j.rinp.2021.104652.
  38. B. Seidu, O.D. Makinde, J.K.K. Asamoah, Threshold quantities and lyapunov functions for ordinary differential equations epidemic models with mass action and standard incidence functions, Chaos Solitons Fractals 170 (2023), 113403. https://doi.org/10.1016/j.chaos.2023.113403.
  39. B. Ivorra, M.R. Ferrández, M. Vela-Pérez, A.M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. the case of China, Commun. Nonlinear Sci. Numer. Simul. 88 (2020), 105303. https://doi.org/10.1016/j.cnsns.2020.105303.
  40. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (Sars-Cov-2), Science 368 (2020), 489–493. https://doi.org/10.1126/science.abb3221.
  41. B. Tang, N.L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov), Infect. Dis. Model. 5 (2020), 248–255. https://doi.org/10.1016/j.idm.2020.02.001.
  42. N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, et al. Report 9: impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, Imperial College London, 2020. https://doi.org/10.25561/77482.
  43. F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study, The Lancet 395 (2020), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3.
  44. B. Abdollahzadeh, F. Soleimanian Gharehchopogh, S. Mirjalili, Artificial gorilla troops optimizer: a new natureinspired metaheuristic algorithm for global optimization problems, Int. J. Intell. Syst. 36 (2021), 5887–5958. https://doi.org/10.1002/int.22535.
  45. Amylia Ait Saadi. Coordination of scout drones (UAVs) in smart-city to serve autonomous vehicles, Thesis, Université Paris-Saclay; Université M’hamed Bougara de Boumerdès, Algérie, 2023.
  46. J.K.K. Asamoah, Z. Jin, G.Q. Sun, Non-seasonal and seasonal relapse model for q fever disease with comprehensive cost-effectiveness analysis, Results Phys. 22 (2021), 103889. https://doi.org/10.1016/j.rinp.2021.103889.
  47. J. Norton, An introduction to sensitivity assessment of simulation models, Environ. Model. Softw. 69 (2015), 166–174. https://doi.org/10.1016/j.envsoft.2015.03.020.