Orthogonal Stability of Additive Functional Equation in Fuzzy β-Normed Spaces

Main Article Content

M. Nila, A. Vijayalakshmi, M. Balamurugan, S. Gayathri, K. Thangapandi, K. Punniyamoorthy, N. Prabaharan

Abstract

The primary objective of this study is to present a novel form of generalised additive functional equation \(\phi\Big(\sum_{j=1}^{l}j v_{j}\Big)=\sum_{j=1}^{l}j \phi(v_{j}),\) where \(l\geq 2\) with each \(v_{i}\bot v_{j};~ i \neq j =1,2,\cdots,l,\) and derive its solution. Mainly, we examine the Hyers-Ulam-Rassias orthogonal stability of this equation by utilizing two different approaches.

Article Details

References

  1. Ashish, R. Chugh, Hyers-Ulam-Rassias Stability of Orthogonally Cubic and Quartic Functional Equations, Int. J. Pure Appl. Math. 81 (2012), 9–20.
  2. T. Bag, S.K. Samanta, Finite Dimensional Fuzzy Normed Linear Spaces, J. Fuzzy Math. 11 (2003), 687–705.
  3. G. Birkhoff, Orthogonality in Linear Metric Spaces, Duke Math. J. 1 (1935), 169–172. https://doi.org/10.1215/S0012-7094-35-00115-6.
  4. S.C. Cheng, J.N. Mordeson, Fuzzy Linear Operators and Fuzzy Normed Linear Spaces, Bull. Calcutta Math. Soc. 86 (1994), 429–436.
  5. L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43–52.
  6. L. Cadariu, V. Radu, Fixed Point Methods for the Generalized Stability of Functional Equations in a Single Variable, Fixed Point Theory Appl. 2008 (2008), 749392. https://doi.org/10.1155/2008/749392.
  7. H. Drljevi´c, On a Functional Which Is Quadratic on A-Orthogonal Vectors, Publ. Inst. Math. (Beograd) (N.S.) 40 (1986), 63–71. http://eudml.org/doc/257754.
  8. C. Felbin, Finite Dimensional Fuzzy Normed Linear Space, Fuzzy Sets Syst. 48 (1992), 239–248. https://doi.org/10.1016/0165-0114(92)90338-5.
  9. M. Fochi, Functional Equations on A-Orthogonal Vectors, Aequat. Math. 38 (1989), 28–40. https://doi.org/10.1007/BF01839491.
  10. S.P. Gudder, D. Strawther, Orthogonally Additive and Orthogonally Increasing Functions on Vector Spaces, Pac. J. Math. 58 (1975), 427–436.
  11. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  12. G. Isac, T.M. Rassias, Stability of Ψ-additive Mappings: Applications to Nonlinear Analysis, Int. J. Math. Math. Sci. 19 (1996), 219–228. https://doi.org/10.1155/S0161171296000324.
  13. R.C. James, Orthogonality in Normed Linear Spaces, Duke Math. J. 12 (1945), 291–302. https://doi.org/10.1215/S0012-7094-45-01223-3.
  14. O. Kaleva, S. Seikkala, On Fuzzy Metric Spaces, Fuzzy Sets Syst. 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1.
  15. A.K. Katsaras, D.B. Liu, Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, J. Math. Anal. Appl. 58 (1977), 135–146. https://doi.org/10.1016/0022-247X(77)90233-5.
  16. S.H. Lee, S.M. Im, I.S. Hwang, Quartic Functional Equations, J. Math. Anal. Appl. 307 (2005), 387–394. https://doi.org/10.1016/j.jmaa.2004.12.062.
  17. R. Lowen, Fuzzy Topological Spaces and Fuzzy Compactness, J. Math. Anal. Appl. 56 (1976), 621–633. https://doi.org/10.1016/0022-247X(76)90029-9.
  18. S.J. Lee, C. Park, R. Saadati, Orthogonal Stability of an Additive-Quartic Functional Equation with the Fixed Point Alternative, J. Inequal. Appl. 2012 (2012), 83. https://doi.org/10.1186/1029-242X-2012-83.
  19. M.S. Moslehian, On the Orthogonal Stability of the Pexiderized Quadratic Equation, J. Differ. Equ. Appl. 11 (2005), 999–1004. https://doi.org/10.1080/10236190500273226.
  20. M.S. Moslehian, On the Stability of the Orthogonal Pexiderized Cauchy Equation, J. Math. Anal. Appl. 318 (2006), 211–223. https://doi.org/10.1016/j.jmaa.2005.05.052.
  21. M.S. Moslehian, T.M. Rassias, Orthogonal Stability of Additive Type Equations, Aequat. Math. 73 (2007), 249–259. https://doi.org/10.1007/s00010-006-2868-0.
  22. L. Paganoni, J. Rätz, Conditional Functional Equations and Orthogonal Additivity, Aequat. Math. 50 (1995), 135–142. https://doi.org/10.1007/BF01831116.
  23. C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point Theory Appl. 2011 (2011), 66. https://doi.org/10.1186/1687-1812-2011-66.
  24. V. Radu, The Fixed Point Alternative and the Stability of Functional Equations, Fixed Point Theory 4 (2003), 91–96.
  25. J. Rätz, On Orthogonally Additive Mappings, Aequat. Math. 28 (1985), 35–49. https://doi.org/10.1007/BF02189390.
  26. J. Rätz, Gy. Szabó, On Orthogonally Additive Mappings, IV, Aequat. Math. 38 (1989), 73–85. https://doi.org/10.1007/BF01839496.
  27. Gy. Szabó, Sesquilinear-Orthogonally Quadratic Mappings, Aequat. Math. 40 (1990), 190–200. https://doi.org/10.1007/BF02112295.
  28. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
  29. F. Vajzovic, Über das Funktional H mit der Eigenschaft: (x, y) = 0 ⇒ H(x + y) + H(x − y) = 2H(x) + 2H(y), Glasnik Mat. Ser. III. 2 (1967), 73–81.
  30. X. Yang, G. Shen, G. Liu, L. Chang, The Hyers-Ulam-Rassias Stability of the Quartic Functional Equation in Fuzzy β-Normed Spaces, J. Inequal. Appl. 2015 (2015), 342. https://doi.org/10.1186/s13660-015-0863-5.