Orthogonal Stability of Additive Functional Equation in Fuzzy β-Normed Spaces
Main Article Content
Abstract
The primary objective of this study is to present a novel form of generalised additive functional equation \(\phi\Big(\sum_{j=1}^{l}j v_{j}\Big)=\sum_{j=1}^{l}j \phi(v_{j}),\) where \(l\geq 2\) with each \(v_{i}\bot v_{j};~ i \neq j =1,2,\cdots,l,\) and derive its solution. Mainly, we examine the Hyers-Ulam-Rassias orthogonal stability of this equation by utilizing two different approaches.
Article Details
References
- Ashish, R. Chugh, Hyers-Ulam-Rassias Stability of Orthogonally Cubic and Quartic Functional Equations, Int. J. Pure Appl. Math. 81 (2012), 9–20.
- T. Bag, S.K. Samanta, Finite Dimensional Fuzzy Normed Linear Spaces, J. Fuzzy Math. 11 (2003), 687–705.
- G. Birkhoff, Orthogonality in Linear Metric Spaces, Duke Math. J. 1 (1935), 169–172. https://doi.org/10.1215/S0012-7094-35-00115-6.
- S.C. Cheng, J.N. Mordeson, Fuzzy Linear Operators and Fuzzy Normed Linear Spaces, Bull. Calcutta Math. Soc. 86 (1994), 429–436.
- L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43–52.
- L. Cadariu, V. Radu, Fixed Point Methods for the Generalized Stability of Functional Equations in a Single Variable, Fixed Point Theory Appl. 2008 (2008), 749392. https://doi.org/10.1155/2008/749392.
- H. Drljevi´c, On a Functional Which Is Quadratic on A-Orthogonal Vectors, Publ. Inst. Math. (Beograd) (N.S.) 40 (1986), 63–71. http://eudml.org/doc/257754.
- C. Felbin, Finite Dimensional Fuzzy Normed Linear Space, Fuzzy Sets Syst. 48 (1992), 239–248. https://doi.org/10.1016/0165-0114(92)90338-5.
- M. Fochi, Functional Equations on A-Orthogonal Vectors, Aequat. Math. 38 (1989), 28–40. https://doi.org/10.1007/BF01839491.
- S.P. Gudder, D. Strawther, Orthogonally Additive and Orthogonally Increasing Functions on Vector Spaces, Pac. J. Math. 58 (1975), 427–436.
- D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
- G. Isac, T.M. Rassias, Stability of Ψ-additive Mappings: Applications to Nonlinear Analysis, Int. J. Math. Math. Sci. 19 (1996), 219–228. https://doi.org/10.1155/S0161171296000324.
- R.C. James, Orthogonality in Normed Linear Spaces, Duke Math. J. 12 (1945), 291–302. https://doi.org/10.1215/S0012-7094-45-01223-3.
- O. Kaleva, S. Seikkala, On Fuzzy Metric Spaces, Fuzzy Sets Syst. 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1.
- A.K. Katsaras, D.B. Liu, Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, J. Math. Anal. Appl. 58 (1977), 135–146. https://doi.org/10.1016/0022-247X(77)90233-5.
- S.H. Lee, S.M. Im, I.S. Hwang, Quartic Functional Equations, J. Math. Anal. Appl. 307 (2005), 387–394. https://doi.org/10.1016/j.jmaa.2004.12.062.
- R. Lowen, Fuzzy Topological Spaces and Fuzzy Compactness, J. Math. Anal. Appl. 56 (1976), 621–633. https://doi.org/10.1016/0022-247X(76)90029-9.
- S.J. Lee, C. Park, R. Saadati, Orthogonal Stability of an Additive-Quartic Functional Equation with the Fixed Point Alternative, J. Inequal. Appl. 2012 (2012), 83. https://doi.org/10.1186/1029-242X-2012-83.
- M.S. Moslehian, On the Orthogonal Stability of the Pexiderized Quadratic Equation, J. Differ. Equ. Appl. 11 (2005), 999–1004. https://doi.org/10.1080/10236190500273226.
- M.S. Moslehian, On the Stability of the Orthogonal Pexiderized Cauchy Equation, J. Math. Anal. Appl. 318 (2006), 211–223. https://doi.org/10.1016/j.jmaa.2005.05.052.
- M.S. Moslehian, T.M. Rassias, Orthogonal Stability of Additive Type Equations, Aequat. Math. 73 (2007), 249–259. https://doi.org/10.1007/s00010-006-2868-0.
- L. Paganoni, J. Rätz, Conditional Functional Equations and Orthogonal Additivity, Aequat. Math. 50 (1995), 135–142. https://doi.org/10.1007/BF01831116.
- C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point Theory Appl. 2011 (2011), 66. https://doi.org/10.1186/1687-1812-2011-66.
- V. Radu, The Fixed Point Alternative and the Stability of Functional Equations, Fixed Point Theory 4 (2003), 91–96.
- J. Rätz, On Orthogonally Additive Mappings, Aequat. Math. 28 (1985), 35–49. https://doi.org/10.1007/BF02189390.
- J. Rätz, Gy. Szabó, On Orthogonally Additive Mappings, IV, Aequat. Math. 38 (1989), 73–85. https://doi.org/10.1007/BF01839496.
- Gy. Szabó, Sesquilinear-Orthogonally Quadratic Mappings, Aequat. Math. 40 (1990), 190–200. https://doi.org/10.1007/BF02112295.
- S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
- F. Vajzovic, Über das Funktional H mit der Eigenschaft: (x, y) = 0 ⇒ H(x + y) + H(x − y) = 2H(x) + 2H(y), Glasnik Mat. Ser. III. 2 (1967), 73–81.
- X. Yang, G. Shen, G. Liu, L. Chang, The Hyers-Ulam-Rassias Stability of the Quartic Functional Equation in Fuzzy β-Normed Spaces, J. Inequal. Appl. 2015 (2015), 342. https://doi.org/10.1186/s13660-015-0863-5.