Analytical Solution of Rate Equations Including Frequency Chirp of Modulated Quantum-Well Laser with Carrier Transport Processes

Main Article Content

Moustafa Ahmed, Maan Al‑Alhumaidi, Awy Sayed

Abstract

When used as light sources in modern fiber communication systems, the modulation bandwidth and chirp are crucial characteristics of high-speed quantum well (QW) lasers. These parameters are primarily constrained by two factors; namely, the transport of charge carriers in the separate confinement heterojunction (SCH) layer and their escape processes in the QW. To analyze the frequency chirp theoretically, a fourth rate equation is added to the existing system of three coupled rate equations, which describe the photon number in the QW and carrier numbers in both the QW and SCH layers. This study employs small-signal analysis to linearize these coupled equations and derives analytical expressions for both the intensity modulation (IM) response and its associated frequency chirp. The chirp is quantified using two metrics, first the chirp per modulated current (CCR), and second the chirp per modulated power (CPR). These analytical expressions are presented in a generalized form, making them applicable to any nonlinear gain mathematical formulation found in the literature. Through numerical calculations applied to high-speed QW lasers, we investigate the individual effects of transport and escape times on the frequency chirp. Our findings demonstrate that CCR reaches its minimum under two specific conditions: when the transport process is relaxed with a relatively long transport time, and when carrier escape in the QW occurs rapidly with a very short escape time. Notably, we found that CPR remains independent of the transport processes.

Article Details

References

  1. M.F. Ahmed, A.H. Bakry, F.T. Albelady, Digital Modulation Characteristics of High-Speed Semiconductor Laser for Use in Optical Communication Systems, Arab. J. Sci. Eng. 39 (2014), 5745–5752. https://doi.org/10.1007/s13369-014-1120-9.
  2. Z.-Y. Liu, T.-G. Zhao, Effect of Linewidth Enhancement Factor in Semiconductor Laser on Fiber Dispersion Transmission System, in: 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), IEEE, Qinhuangdao, China, 2015: pp. 702–706. https://doi.org/10.1109/IMCCC.2015.153.
  3. R. Nagarajan, M. Ishikawa, T. Fukushima, R.S. Geels, J.E. Bowers, High Speed Quantum-Well Lasers and Carrier Transport Effects, IEEE J. Quantum Electron. 28 (1992), 1990–2008. https://doi.org/10.1109/3.159508.
  4. A.P. Wright, B. Garrett, G.H.B. Thompson, J.E.A. Whiteaway, Influence of Carrier Transport on Wavelength Chirp of InGaAs/InGaAsP MQW Lasers, Electron. Lett. 28 (1992), 1911–1913. https://doi.org/10.1049/el:19921223.
  5. M.O. Vassell, W.F. Sharfin, W.C. Rideout, J. Lee, Competing Effects of Well-Barrier Hole Burning and Nonlinear Gain on the Resonance Characteristics of Quantum-Well Lasers, IEEE J. Quantum Electron. 29 (1993), 1319–1329. https://doi.org/10.1109/3.236144.
  6. S.C. Kan, D. Vassilovski, T.C. Wu, K.Y. Lau, Quantum Capture and Escape in Quantum-Well Lasers-Implications on Direct Modulation Bandwidth Limitations, IEEE Photonics Technol. Lett. 4 (1992), 428–431. https://doi.org/10.1109/68.136475.
  7. S.C. Kan, D. Vassilovski, T.C. Wu, K.Y. Lau, Quantum Capture and Escape in Quantum-Well Lasers-Implications on Direct Modulation Bandwidth Limitations, IEEE Photonics Technol. Lett. 4 (1992), 428–431. https://doi.org/10.1109/68.136475.
  8. W. Rideout, W.F. Sharfin, E.S. Koteles, M.O. Vassell, B. Elman, Well-Barrier Hole Burning in Quantum Well Lasers, IEEE Photonics Technol. Lett. 3 (1991), 784–786. https://doi.org/10.1109/68.84492.
  9. R. Nagarajan, T. Fukushima, S.W. Corzine, J.E. Bowers, Effects of Carrier Transport on High-Speed Quantum Well Lasers, Appl. Phys. Lett. 59 (1991), 1835–1837. https://doi.org/10.1063/1.106213.
  10. R. Nagarajan, T. Fukushima, M. Ishikawa, J.E. Bowers, R.S. Geels, L.A. Coldren, Transport Limits in High-Speed Quantum-Well Lasers: Experiment and Theory, IEEE Photonics Technol. Lett. 4 (1992), 121–123. https://doi.org/10.1109/68.122335.
  11. R.F.S. Ribeiro, J.R.F. Da Rocha, A.V.T. Cartaxo, H.J.A. Da Silva, B. Franz, B. Wedding, FM Response of Quantum-Well Lasers Taking into Account Carrier Transport Effects, IEEE Photonics Technol. Lett. 7 (1995), 857–859. https://doi.org/10.1109/68.403980.
  12. E. Peral, W.K. Marshall, A. Yariv, Precise Measurement of Semiconductor Laser Chirp Using Effect of Propagation in Dispersive Fiber and Application to Simulation of Transmission through Fiber Gratings, J. Lightwave Technol. 16 (1998), 1874–1880. https://doi.org/10.1109/50.721075.
  13. E. Peral, A. Yariv, Measurement and Characterization of Laser Chirp of Multiquantum-Well Distributed-Feedback Lasers, IEEE Photonics Technol. Lett. 11 (1999), 307–309. https://doi.org/10.1109/68.748217.
  14. N. Otsuka, M. Kito, M. Ishino, Y. Matsui, 1.5-Μm Strained-Layer MQW-DFB Lasers with High Relaxation-Oscillation Frequency and Low-Chirp Characteristics, IEEE J. Quantum Electron. 32 (1996), 1230–1236. https://doi.org/10.1109/3.517023.
  15. P. Krehlik, Are Carrier Transport Effects Important for Chirp Modeling of Quantum-Well Lasers?, Adv. Electron. Telecommun. 1 (2010), 63-66.
  16. R.F.S. Ribeiro, J.R.F. Da Rocha, A.V.T. Cartaxo, H.J.A. Da Silva, B. Franz, B. Wedding, FM Response of Quantum-Well Lasers Taking into Account Carrier Transport Effects, IEEE Photonics Technol. Lett. 7 (1995), 857–859. https://doi.org/10.1109/68.403980.
  17. G.P. Agrawal, Fiber-Optic Communication Systems, Third ed., Wiley, New York, 2002.
  18. O. Doyle, P.B. Gallion, G. Debarge, Influence of Carrier Nonuniformity on the Phase Relationship between Frequency and Intensity Modulation in Semiconductor Lasers, IEEE J. Quantum Electron. 24 (1988), 516–522. https://doi.org/10.1109/3.156.
  19. J.J. He, Proposal for Q-Modulated Semiconductor Laser, IEEE Photonics Technol. Lett. 19 (2007), 285–287. https://doi.org/10.1109/LPT.2007.891242.
  20. M. Ahmed, M. Al-Alhumaidi, Influence of Carrier Transport on Modulation Characteristics of Quantum-Well Semiconductor Lasers, J. Comp. Electron. 22 (2023), 1140–1150. https://doi.org/10.1007/s10825-023-02060-6.
  21. A. Hangauer, G. Wysocki, Gain Compression and Linewidth Enhancement Factor in Mid-IR Quantum Cascade Lasers, IEEE J. Sel. Top. Quantum Electron. 21 (2015), 74–84. https://doi.org/10.1109/JSTQE.2015.2422073.
  22. A. Yousuf, H. Najeeb-ud-din, Effect of Gain Compression above and below Threshold on the Chirp Characteristics of 1.55 Μm Distributed Feedback Laser, Optical Rev. 23 (2016), 897–906. https://doi.org/10.1007/s10043-016-0268-9.
  23. A.G. Plyavenek, Combined Effect of Carrier Heating and Carrier Transport on the Intensity Modulation Response of Quantum Well Lasers, Optics Commun. 113 (1994), 259–271. https://doi.org/10.1016/0030-4018(94)90613-0.
  24. R. Nagarajan, T. Fukushima, J.E. Bowers, R.S. Geels, L.A. Coldren, Single Quantum Well Strained InGaAs/GaAs Lasers with Large Modulation Bandwidth and Low Damping, Electron. Lett. 27 (1991), 1058-1060.
  25. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Coherent Light Emission From GaAs Junctions, Phys. Rev. Lett. 9 (1962), 366–368. https://doi.org/10.1103/PhysRevLett.9.366.
  26. M. Yamada, Y. Suematsu, Analysis of Gain Suppression in Undoped Injection Lasers, J. Appl. Phys. 52 (1981), 2653–2664. https://doi.org/10.1063/1.329064.
  27. M. Ahmed, M. Yamada, An Infinite Order Perturbation Approach to Gain Calculation in Injection Semiconductor Lasers, J. Appl. Phys. 84 (1998), 3004–3015. https://doi.org/10.1063/1.368453.
  28. D.J. Channin, Effect of Gain Saturation on Injection Laser Switching, J. Appl. Phys. 50 (1979), 3858–3860. https://doi.org/10.1063/1.326510.
  29. G.P. Agrawal, Effect of Gain Nonlinearities on Period Doubling and Chaos in Directly Modulated Semiconductor Lasers, Appl. Phys. Lett. 49 (1986), 1013–1015. https://doi.org/10.1063/1.97456.
  30. G. Eisenstein, J.M. Wiesenfeld, M. Wegener, G. Sucha, D.S. Chemla, S. Weiss, G. Raybon, U. Koren, Ultrafast Gain Dynamics in 1.5 Μm Multiple Quantum Well Optical Amplifiers, Appl. Phys. Lett. 58 (1991), 158–160. https://doi.org/10.1063/1.105237.
  31. S. Weiss, J.M. Wiesenfeld, D.S. Chemla, G. Raybon, G. Sucha, et al. Carrier Capture Times in 1.5 Μm Multiple Quantum Well Optical Amplifiers, Appl. Phys. Lett. 60 (1992), 9–11. https://doi.org/10.1063/1.107426.
  32. S. Morin, B. Deveaud, F. Clerot, K. Fujiwara, K. Mitsunaga, Capture of Photoexcited Carriers in a Single Quantum Well with Different Confinement Structures, IEEE J. Quantum Electron. 27 (1991), 1669–1675. https://doi.org/10.1109/3.89991.
  33. H. Schneider, K.V. Klitzing, Thermionic Emission and Gaussian Transport of Holes in a GaAs/A1xGal1-xAs Multiple-Quantum-Well Structure, Phys. Rev. B, 38 (1988), 6160-6165. https://doi.org/10.1103/physrevb.38.6160.
  34. M. Ahmed, A. El-Lafi, Analysis of Small-Signal Intensity Modulation of Semiconductor Lasers Taking Account of Gain Suppression, Pramana 71 (2008), 99–115. https://doi.org/10.1007/s12043-008-0144-7.