New Properties of Frames
Main Article Content
Abstract
Let H be a finite-dimentional complex Hilbert space and l2(H) is the space of square summable sequences in H. We will give a new characterization of a frame for H, we give our definition of a frame for the Hilbert space l2(H), we also define and give the properties of the frame operator. We equally show that our definition is equivalent to the definition of a frame for the Hilbert space H. Finally, we give a way to construct frames for l2(Hn) from frames for l2(Hp) such that p<n via fusion frame theory.
Article Details
References
- P.G. Casazza, The Art of Frame Theory, Taiwan. J. Math. 4 (2000), 129–201. https://doi.org/10.11650/twjm/1500407227.
- P.G. Casazza, G. Kutyniok, Frames of Subspaces, in: Wavelets, Frames and Operator Theory (College Park, MD, 2003), Contemp. Math. 345, Amer. Math. Soc., Providence, pp. 87-113, 2004.
- P.G. Casazza, G. Kutyniok, S. Li, Fusion Frames and Distributed Processing, Appl. Comput. Harmon. Anal. 25 (2008), 114–132. https://doi.org/10.1016/j.acha.2007.10.001.
- G. Casazza, G. Kutyniok, F. Philipp, Introduction to Finite Frame Theory, in: P.G. Casazza, G. Kutyniok, (eds), Finite Frames: Theory and Applications, Birkhauser, 2012.
- O. Christensen, An Introduction to Frames and Riesz Bases, Brikhauser, 2016.
- I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
- R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6.
- D. Gabor, Theory of Communication, J. Inst. Elec. Eng. 93 (1946), 429–457.
- K. Grochenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston, 2001.
- T. Strohmer, R.W. Heath, Grassmannian Frames with Applications to Coding and Communication, Appl. Comput. Harmon. Anal. 14 (2003), 257–275. https://doi.org/10.1016/S1063-5203(03)00023-X.