New Properties of Frames

Main Article Content

Hamid Faraj, Mohamed Maghfoul

Abstract

Let H be a finite-dimentional complex Hilbert space and l2(H) is the space of square summable sequences in H. We will give a new characterization of a frame for H, we give our definition of a frame for the Hilbert space l2(H), we also define and give the properties of the frame operator. We equally show that our definition is equivalent to the definition of a frame for the Hilbert space H. Finally, we give a way to construct frames for l2(Hn) from frames for l2(Hp) such that p<n via fusion frame theory.

Article Details

References

  1. P.G. Casazza, The Art of Frame Theory, Taiwan. J. Math. 4 (2000), 129–201. https://doi.org/10.11650/twjm/1500407227.
  2. P.G. Casazza, G. Kutyniok, Frames of Subspaces, in: Wavelets, Frames and Operator Theory (College Park, MD, 2003), Contemp. Math. 345, Amer. Math. Soc., Providence, pp. 87-113, 2004.
  3. P.G. Casazza, G. Kutyniok, S. Li, Fusion Frames and Distributed Processing, Appl. Comput. Harmon. Anal. 25 (2008), 114–132. https://doi.org/10.1016/j.acha.2007.10.001.
  4. G. Casazza, G. Kutyniok, F. Philipp, Introduction to Finite Frame Theory, in: P.G. Casazza, G. Kutyniok, (eds), Finite Frames: Theory and Applications, Birkhauser, 2012.
  5. O. Christensen, An Introduction to Frames and Riesz Bases, Brikhauser, 2016.
  6. I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
  7. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6.
  8. D. Gabor, Theory of Communication, J. Inst. Elec. Eng. 93 (1946), 429–457.
  9. K. Grochenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston, 2001.
  10. T. Strohmer, R.W. Heath, Grassmannian Frames with Applications to Coding and Communication, Appl. Comput. Harmon. Anal. 14 (2003), 257–275. https://doi.org/10.1016/S1063-5203(03)00023-X.