Generalized Nonlinear Variational Inequality Problems with Random Variation

Main Article Content

Hussain Gissy, Salahuddin

Abstract

This text deals with exploring random solutions for generalized nonlinear variational inequality problems. By leveraging the Fan-KKM theorem and Aumann’s measurable selection theorem, we can establish the existence and uniqueness of random solution sets, given the conditions of monotonicity and convexity. Additionally, we use Minty’s lemma to demonstrate the compactness and convexity of the random solution sets.

Article Details

References

  1. Y.J. Cho, M.F. Khan, Salahuddin, Notes on Random Fixed Point Theorems, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 13 (2006), 227–236.
  2. O. Hans, Reduzierende zulliallige Transformaten, Czechoslovak. Math. J. 7 (1958), 154–158. http://dml.cz/dmlcz/100238.
  3. S. Itoh, Random Fixed Point Theorems with an Application to Random Differential Equations in Banach Spaces, J. Math. Anal. Appl. 67 (1979), 261–273. https://doi.org/10.1016/0022-247X(79)90023-4.
  4. Salahuddin, Approximation of Random Fixed Point Theorems, The Interdisciplinary Journal of Discontinuity, Nonlinear. Complex. 7 (2018), 95–105. https://doi.org/10.5890/DNC.2018.03.008.
  5. A. Spacek, Zufallige Gleichungen, Czechoslovak. Math. J. 5 (1955), 462–466. http://dml.cz/dmlcz/100162.
  6. C.P. Tsokos, On a Stochastic Integral Equation of the Volterra Type, Math. Syst. Theory 3 (1969), 222–231. https://doi.org/10.1007/BF01703921.
  7. A. Bensoussan, Y. Li, S.C.P. Yam, Backward Stochastic Dynamics with a Subdifferential Operator and Non-Local Parabolic Variational Inequalities, Stoch. Process. Appl. 128 (2018), 644–688. https://doi.org/10.1016/j.spa.2017.06.005.
  8. J. Ren, Q. Shi, J. Wu, Limit Theorems for Stochastic Variational Inequalities with Non-Lipschitz Coefficients, Potent. Anal. 51 (2019), 101–125. https://doi.org/10.1007/s11118-018-9704-8.
  9. S.S. Zhang, N.J. Huang, Random Generalized Set-Valued Quasi-Complementarity Problems, Acta Math. Appl. Sin. 16 (1993), 396–405.
  10. N. Pakkaranang, Double Inertial Extragradient Algorithms for Solving Variational Inequality Problems with Convergence Analysis, Math. Meth. Appl. Sci. 47 (2024), 11642–11669. https://doi.org/10.1002/mma.10147.
  11. N. Wairojjana, N. Pholasa, C. Khunpanuk, N. Pakkaranang, Accelerated Strongly Convergent Extragradient Algorithms to Solve Variational Inequalities and Fixed Point Problems in Real Hilbert Spaces, Nonlinear Funct. Anal. Appl. 29 (2024), 307–332. https://doi.org/10.22771/NFAA.2024.29.02.01.
  12. P. Daniele, S. Giuffrè, Random Variational Inequalities and the Random Traffic Equilibrium Problem, J. Optim. Theory Appl. 167 (2015), 363–381. https://doi.org/10.1007/s10957-014-0655-y.
  13. Salahuddin, R.U. Verma, General Random Variational Inequalities and Applications, Trans. Math. Prog. Appl. 4 (2016), 25–33.
  14. K. Fan, Some Properties of Convex Sets Related to Fixed Point Theorems, Math. Ann. 266 (1984), 519–537. https://doi.org/10.1007/BF01458545.
  15. U. Ravat, U.V. Shanbhag, On the Existence of Solutions to Stochastic Quasi-Variational Inequality and Complementarity Problems, Math. Program. 165 (2017), 291–330. https://doi.org/10.1007/s10107-017-1179-7.
  16. K.K. Tan, X.Z. Yuan, On Deterministic and Random Fixed Points, Proc. Amer. Math. Soc. 119 (1993), 849–856. https://doi.org/10.1090/S0002-9939-1993-1169051-2.
  17. B.S. Lee, Salahuddin, Minty Lemma for Inverted Vector Variational Inequalities, Optimization 66 (2017), 351–359. https://doi.org/10.1080/02331934.2016.1271799.
  18. C. Min, F. Fan, Z. Yang, X. Li, On a Class of Generalized Stochastic Browder Mixed Variational Inequalities, J. Ineq. Appl. 2020 (2020), 4. https://doi.org/10.1186/s13660-019-2278-1.
  19. P. Saipara, P. Kumam, A. Sombat, A. Padcharoen, W. Kumam, Stochastic Fixed Point Theorems for a Random ZContraction in a Complete ProbabilityMeasure Space with Application to Non-Linear Stochastic Integral Equations, Math. Nat. Sci. 01 (2017), 40–48. https://doi.org/10.22436/mns.01.01.05.
  20. K. Burdzy, B. Kołodziejek, T. Tadi´c, Stochastic Fixed Point Equation and Local Dependence Measure, arXiv:2004.01850v1 [math.PR] (2020). http://arxiv.org/abs/2004.01850.
  21. N. Hermer, D.R. Luke, A. Sturm, Random Function Iterations for Stochastic Fixed Point Problems, arXiv:2007.06479v2 [math.FA] (2022). http://arxiv.org/abs/2007.06479.
  22. S.S. Zhang, Y.H. Ma, KKM Technique and Its Applications, Appl. Math. Mech. 14 (1993), 11–20.
  23. K. Fan, A Generalization of Tychonoff’s Fixed Point Theorem, Math. Ann. 142 (1961), 305–310. https://doi.org/10.1007/BF01353421.
  24. N.M. Chuong, N.X. Thuan, Random Nonlinear Variational Inequalities for Mappings of Monotone Type in Banach Spaces, Stoch. Anal. Appl. 24 (2006), 489–499. https://doi.org/10.1080/SAP-200064451.
  25. R.J. Aumann, Integrals of Set-Valued Functions, J. Math. Anal. Appl. 12 (1965), 1–12. https://doi.org/10.1016/0022-247X(65)90049-1.
  26. X.P. Ding, Auxiliary Principle and Algorithm for Mixed Equilibrium Problems and Bilevel Mixed Equilibrium Problems in Banach Spaces, J. Optim. Theory Appl. 146 (2010), 347–357. https://doi.org/10.1007/s10957-010-9651-z.
  27. C.J. Himmelberg, T. Parthasarathy, F.S.V. Vleck, On Measurable Relations, Fundam. Math. 111 (1981), 52–72.
  28. G.J. Minty, On the Generalization of a Direct Method of the Calculus of Variations, Bull. Amer. Math. Soc. 73 (1967), 315–321. https://doi.org/10.1090/S0002-9904-1967-11732-4.