Exploring Novel Fixed Point Solutions in Boundary Value Problems

Main Article Content

Ahmad Aloqaily, Nizar Souayah, Salma Haque, Nabil Mlaiki

Abstract

Within this manuscript, we present an innovative concept of contraction, building upon the foundation laid by Jleli and Samet. Subsequently, we introduce the concept of θ-contractions. Leveraging these novel ideas, we formulate a series of fresh fixed-point theorems applicable to spaces utilizing the Controlled Branciari metric. Notably, our approach integrates and consolidates diverse fixed-point outcomes, eliminating the necessity for the Hausdorff assumption. To illustrate the practicality of our findings, we provide examples and applications to boundary value problems associated with fourth-order differential equations.

Article Details

References

  1. S. Banach, Sur Les Opérations Dans Les Ensembles Abstraits et Leur Application Aux Équations Intégrales, Fundamenta Mathematicae 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  2. M. Jleli, B. Samet, A New Generalization of the Banach Contraction Principle, J. Inequal. Appl. 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38.
  3. N. Hussain, V. Parvaneh, B. Samet, C. Vetro, Some Fixed Point Theorems for Generalized Contractive Mappings in Complete Metric Spaces, Fixed Point Theory Appl. 2015 (2015), 185. https://doi.org/10.1186/s13663-015-0433-z.
  4. N. Mlaiki, K. Abodayeh, H. Aydi, T. Abdeljawad, M. Abuloha, Rectangular Metric-Like Type Spaces and Related Fixed Points, J. Math. 2018 (2018), 3581768. https://doi.org/10.1155/2018/3581768.
  5. Z. Mustafa, M. Jaradat, H.M. Jaradat, A Remarks on the Paper "Some Fixed Point Theorems for Generalized Contractive Mappings in Complete Metric Spaces", J. Math. Anal. 8 (2017), 17–22.
  6. A. Al-Rawashdeh, J. Ahmad, Common Fixed Point Theorems for JS-Contractions, Bull. Math. Anal. Appl. 8 (2016), 12–22.
  7. J. Ahmad, A.E. Al-Mazrooei, I. Altun, Generalized θ-Contractive Fuzzy Mappings, J. Intell. Fuzzy Syst. 35 (2018), 1935–1942. https://doi.org/10.3233/JIFS-171515.
  8. S. Jiang, Z. Li, B. Damjanovi´c, A Note on ‘Some Fixed Point Theorems for Generalized Contractive Mappings in Complete Metric Spaces’, Fixed Point Theory Appl. 2016 (2016), 62. https://doi.org/10.1186/s13663-016-0539-y.
  9. M. Imdad, W.M. Alfaqih, I.A. Khan, Weak θ-Contractions and Some Fixed Point Results with Applications to Fractal Theory, Adv. Differ. Equ. 2018 (2018), 439. https://doi.org/10.1186/s13662-018-1900-8.
  10. X. Liu, S. Chang, Y. Xiao, L.C. Zhao, Existence of Fixed Points for Θ-Type Contraction and Θ-Type Suzuki Contraction in Complete Metric Spaces, Fixed Point Theory Appl. 2016 (2016), 8. https://doi.org/10.1186/s13663-016-0496-5.
  11. Z. Li, S. Jiang, Fixed Point Theorems of JS-Quasi-Contractions, Fixed Point Theory and Applications 2016 (2016), 40. https://doi.org/10.1186/s13663-016-0526-3.
  12. M. Jleli, E. Karapinar, B. Samet, Further Generalizations of the Banach Contraction Principle, J. Inequal. Appl. 2014 (2014), 439. https://doi.org/10.1186/1029-242X-2014-439.
  13. T. Kamran, M. Samreen, Q. Ul Ain, A Generalization of B-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
  14. E. Karapınar, P.S. Kumari, D. Lateef, A New Approach to the Solution of the Fredholm Integral Equation via a Fixed Point on Extended b-Metric Spaces, Symmetry 10 (2018), 512. https://doi.org/10.3390/sym10100512.
  15. S.K. Panda, A. Tassaddiq, R.P. Agarwal, A New Approach to the Solution of Non-Linear Integral Equations via Various FBe -Contractions, Symmetry 11 (2019), 206. https://doi.org/10.3390/sym11020206.
  16. B. Alqahtani, A. Fulga, E. Karapinar, Common Fixed Point Results on an Extended b-Metric Space, J. Inequal. Appl. 2018 (2018), 158. https://doi.org/10.1186/s13660-018-1745-4.
  17. P.S. Kumariy, C.B. Ampaduz, J. Nantadilok, On New Fixed Point Results in Eb -Metric Spaces, Thai J. Math. Special Issue (2018), 367–378.
  18. B. Alqahtani, A. Fulga, E. Karapinar, Non-Unique Fixed Point Results in Extended b-Metric Space, Mathematics 6 (2018), 68. https://doi.org/10.3390/math6050068.
  19. H. Aydi, E. Karapinar, B. Samet, Fixed Points for Generalized (α,ψ)-Contractions on Generalized Metric Spaces, J. Inequal. Appl. 2014 (2014), 229. https://doi.org/10.1186/1029-242X-2014-229.
  20. H. Aydi, E. Karapinar, H. Lakzian, Fixed Point Results on a Class of Generalized Metric Spaces, Math. Sci. 6 (2012), 46. https://doi.org/10.1186/2251-7456-6-46.
  21. A. Azam, M. Arshad, Kannan Fixed Point Theorem on Generalized Metric Spaces, J. Nonlinear Sci. Appl. 01 (2008), 45–48. https://doi.org/10.22436/jnsa.001.01.07.
  22. N. Bilgili, E. Karapınar, D. Turkoglu, A Note on Common Fixed Points for(ψ, α, β)-Weakly Contractive Mappings in Generalized Metric Spaces, Fixed Point Theory Appl. 2013 (2013), 287. https://doi.org/10.1186/1687-1812-2013-287.
  23. A. Branciari, A Fixed Point Theorem of Banach-Caccioppoli Type on a Class of Generalized Metric Spaces, Publ. Math. Debrecen, 57 (2000), 31–37.
  24. A. Branciari, A Fixed Point Theorem for Mappings Satisfying a General Contractive Condition of Integral Type, Int. J. Math. Math. Sci. 29 (2002), 531–536. https://doi.org/10.1155/S0161171202007524.
  25. R. George, S. Radenovi´c, K.P. Reshma, S. Shukla, Rectangular b-Metric Space and Contraction Principles, J. Nonlinear Sci. Appl. 08 (2015), 1005–1013. https://doi.org/10.22436/jnsa.008.06.11.
  26. L. Kikina, K. Kikina, A Fixed Point Theorem in Generalized Metric Spaces, Demonstr. Math. 46 (2013), 181–190. https://doi.org/10.1515/dema-2013-0432.
  27. A. Aloqaily, D.-S. Sagheer, I. Urooj, S. Batul, N. Mlaiki, Solving Integral Equations via Hybrid Interpolative RI-Type Contractions in b-Metric Spaces, Symmetry 15 (2023), 465. https://doi.org/10.3390/sym15020465.
  28. B. Samet, Discussion on "A Fixed Point Theorem of Banach–Caccioppoli Type on a Class of Generalized Metric Spaces" by A. Branciari, Publ. Math. Debrecen 76 (2010), 493–494. https://doi.org/10.5486/PMD.2010.4595.
  29. B.K. Lahiri, P. Das, Fixed Point of a Ljubomir Ciri´c’s Quasi-Contraction Mapping in a Generalized Metric Space, ´ Publ. Math. Debrecen, 61 (2002), 589–594.
  30. Z. Kadeburg, S. Radenovic, On Generalized Metric Spaces: A Survey, TWMS J. Pure Appl. Math. 5 (2014), 3–13. `
  31. I.R. Sarma, J.M. Rao2, S.S. Rao, Contractions Over Generalized Metric Spaces, J. Nonlinear Sci. Appl. 02 (2009), 180–182. https://doi.org/10.22436/jnsa.002.03.06.
  32. T. Suzuki, Generalized Metric Spaces Do Not Have the Compatible Topology, Abstr. Appl. Anal. 2014 (2014), 458098. https://doi.org/10.1155/2014/458098.
  33. E. Karapinar, S. Czerwik, H. Aydi, (α,ψ)-Meir-Keeler Contraction Mappings in Generalized b-Metric Spaces, J. Function Spaces 2018 (2018), 3264620. https://doi.org/10.1155/2018/3264620.
  34. D. Mihe¸t, On Kannan Fixed Point Principle in Generalized Metric Spaces, J. Nonlinear Sci. Appl. 02 (2009), 92–96. https://doi.org/10.22436/jnsa.002.02.03.
  35. E. Karapınar, Discussion on (α,ψ) Contractions on Generalized Metric Spaces, Abstr. Appl. Anal. 2014 (2014), 962784. https://doi.org/10.1155/2014/962784.
  36. E. Karapinar, Fixed Points Results for α-Admissible Mapping of Integral Type on Generalized Metric Spaces, Abstr. Appl. Anal. 2015 (2015), 141409. https://doi.org/10.1155/2015/141409.
  37. A. Aloqaily, N. Souayah, K. Matawie, N. Mlaiki, W. Shatanawi, A New Best Proximity Point Results in Partial Metric Spaces Endowed with a Graph, Symmetry 15 (2023), 611. https://doi.org/10.3390/sym15030611.
  38. M. Jleli, B. Samet, The Kannans Fixed Point Theorem in a Cone Rectangular Metric Space, J. Nonlinear Sci. Appl. 02 (2009), 161–167. https://doi.org/10.22436/jnsa.002.03.03.
  39. N. Souayah, A Fixed Point in Partial Sb -Metric Spaces, An. St. Univ. Ovidius Constanta - Ser. Mat. 24 (2016), 351–362. https://doi.org/10.1515/auom-2016-0062.
  40. T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
  41. N. Souayah, N. Mlaiki, A Coincident Point Principle for Two Weakly Compatible Mappings in Partial S-Metric Spaces, J. Nonlinear Sci. Appl. 09 (2016), 2217–2223. https://doi.org/10.22436/jnsa.009.05.25.
  42. T. Abdeljawad, K. Abodayeh, N.Mlaiki, On Fixed Point Generalizations to Partial b-Metric Spaces, J. Comput. Anal. Appl. 19 (2015), 883–891.
  43. N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics 6 (2018), 194. https://doi.org/10.3390/math6100194.
  44. N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, An Improvement of Recent Results in Controlled Metric Type Spaces, Filomat 34 (2020), 1853–1862. https://doi.org/10.2298/FIL2006853M.
  45. N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawed, Fixed Point Theorems in Mb -Metric Spaces, J. Math. Anal. 7 (2016), 1–9.
  46. G. Nallaselli, A.J. Gnanaprakasam, G. Mani, Z.D. Mitrovic, A. Aloqaily, N. Mlaiki, Integral Equation via Fixed Point Theorems on a New Type of Convex Contraction in b-Metric and 2-Metric Spaces, Mathematics 11 (2023), 344. https://doi.org/10.3390/math11020344.
  47. N. Souayah, M. Mrad, On Fixed-Point Results in Controlled Partial Metric Type Spaces with a Graph, Mathematics 8 (2019), 33. https://doi.org/10.3390/math8010033.