Structural Derivations in Hilbert Algebras by Endomorphisms

Main Article Content

Aiyared Iampan, Neelamegarajan Rajesh, C. Arivazhagi, R. Vennila

Abstract

This work introduces the concept of f-derivations in Hilbert algebras, exploring its theoretical foundation alongside a series of illustrative examples. We examine fundamental properties associated with f-derivations through rigorous analysis, shedding light on their algebraic structure and behaviour. In particular, we demonstrate that the kernel Kerdf(A) constitutes a near filter (subalgebra), while the fixed set Fixdf(f) forms a subalgebra within the Hilbert algebra A. These results provide new insights into the interaction between derivations and substructures in Hilbert algebras, offering potential avenues for further exploration in algebraic logic and related fields.

Article Details

References

  1. T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, A Bi-Endomorphism Induces a New Type of Derivations on B-Algebras, Ital. J. Pure Appl. Math. 48 (2022), 336–348.
  2. T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, A Novel Derivation Induced by Some Binary Operations on d-Algebras, Int. J. Math. Comp. Sci. 17 (2022), 173–182.
  3. T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, New Derivations Utilizing Bi-Endomorphisms on B-Algebras, J. Math. Comp. Sci. 11 (2021), 6420–6432. https://doi.org/10.28919/jmcs/6376.
  4. D. Busneag, A Note on Deductive Systems of a Hilbert Algebra, Kobe J. Math. 2 (1985), 29–35. https://cir.nii.ac.jp/crid/1570854175360486400.
  5. D. Busneag, Hilbert Algebras of Fractions and Maximal Hilbert Algebras of Quotients, Kobe J. Math. 5 (1988), 161–172. https://cir.nii.ac.jp/crid/1573387449453069952.
  6. I. Chajda, R. Halaš, Congruences and Ideals in Hilbert Algebras, Kyungpook Math. J. 39 (1999), 429–432.
  7. A. Diego, Sur les Algébres de Hilbert, Collection de Logique Mathématique, Ser. A, Ed. Hermann, Paris, (1966).
  8. W.A. Dudek, On Fuzzification in Hilbert Algebras, Contrib. Gen. Algebra 11 (1999), 77–83.
  9. L. Henkin, An Algebraic Characterization of Quantifiers, Fund. Math. 37 (1950), 63–74.
  10. A. Iampan, Derivations of UP-Algebras by Means of UP-Endomorphisms, J. Algebr. Struct. Appl. 3 (2016), 1–20.
  11. A. Iampan, N. Rajesh, On Multipliers of Hilbert Algebras, Eur. J. Pure Appl. Math. 17 (2024), 2726–2737.
  12. Y.B. Jun, Commutative Hilbert Algebras, Soochow J. Math. 22 (1996), 477–484.
  13. Y.B. Jun, Deductive Systems of Hilbert Algebras, Math. Japon. 43 (1996), 51–54.
  14. Y.B. Jun, J.W. Nam, S.M. Hong, A Note on Hilbert Algebras, East Asian Math. J. 10 (1994), 279–285.
  15. P. Muangkarn, C. Suanoom, A. Iampan, New Derivations of d-Algebras Based on Endomorphisms, Int. J. Math. Comp. Sci. 17 (2022), 1025–1032.
  16. P. Muangkarn, C. Suanoom, P. Pengyim, A. Iampan, fq-Derivations of B-Algebras, J. Math. Comp. Sci. 11 (2021), 2047–2057.
  17. P. Muangkarn, C. Suanoom, A. Yodkheeree, A. Iampan, Derivations Induced by an Endomorphism of BG-Algebras, Int. J. Math. Comp. Sci. 17 (2022), 847–852.
  18. K. Sawika, R. Intasan, A. Kaewwasri, A. Iampan, Derivations of UP-Algebras, Korean J. Math. 24 (2016), 345–367. https://doi.org/10.11568/KJM.2016.24.3.345.
  19. T. Tippanya, N. Iam-Art, P. Moonfong, A. Iampan, A New Derivation of UP-Algebras by Means of UPEndomorphisms, Algebra Lett. 2017 (2017), 4.