Magneto Dynamic Stability of Bounded Cylindrical Streaming Fluid Jet Pervaded by Toroidal Magnetic Field

Main Article Content

Mohamed H. Hendy, M. S. Jazmati

Abstract

The hydromangetic stability of bounded fluid jet under the influence of the electromagnetic (with toroidal varying field) force has been developed. A general dispersion relation valid for all modes of perturbation is derived. The geometric factor q which is the radii ratio of the tenuous-fluid regions plays an important role for stabilizing the model. The axial and transvers magnetic fields interior and exterior the fluid jet are stabilizing. The magnetic fields decrease the streaming destabilizing domains and at the same time give a sort or rigidity to the fluid molecules. For any value of the applying magnetic field strength, the instability character of the streaming model could be suppressed and dispersed. These results are confirmed numerically upon using computer programs.

Article Details

References

  1. J.W. Rayleigh, The Theory of Sound, Dover Publications, New York, 1945.
  2. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, 1981.
  3. A.H. Nayfeh, Nonlinear Stability of a Liquid Jet, Phys. Fluids 13 (1970), 841–847. https://doi.org/10.1063/1.1693025.
  4. A.E. Radwan, S.S. Elazab, Non-Axisymmetric Magnetodynamic Instability of a Fluid Cylinder Subject to Varying Fields, J. Magn. Magn. Mater. 79 (1989), 33–41. https://doi.org/10.1016/0304-8853(89)90289-8.
  5. A.E. Radwan, S.S. Elazab, Instability of a Streaming Jet under the Influence of Vacuum Magnetic Fields, Astrophys. Space Sci. 158 (1989), 281–295. https://doi.org/10.1007/BF00639730.
  6. On the Role of Rotation in the Generation of Magnetic Fields by Fluid Motions, Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 306 (1982), 223–234. https://doi.org/10.1098/rsta.1982.0082.
  7. K. K. Khurana, Some Studies of Magnetohydrodynamic Oscillations of a Rotating Fluid, Thesis, Durham University, 1984.
  8. A.E. Radwan, Stability of a Streaming Magnetized Fluid Jet Penetrated Internally by a Toroidal Varying Magnetic Field, Phys. Scripta 56 (1997), 640–643. https://doi.org/10.1088/0031-8949/56/6/019.
  9. A.E. Radwan, H.A. Radwan, M.H. Hendi, Toroidal Magnetodynamic Stability of Cylindrical Fluid Jet, Chaos Solitons Fractals 12 (2001), 1729–1735. https://doi.org/10.1016/S0960-0779(00)00088-6.
  10. A. Sakuraba, Linear Magnetoconvection in Rotating Fluid Spheres Permeated by a Uniform Axial Magnetic Field, Geophys. Astrophys. Fluid Dyn. 96 (2002), 291–318. https://doi.org/10.1080/03091920290024234.
  11. A.E. Radwan, A.A. Hasan, Magneto Hydrodynamic Stability of Self-Gravitational Fluid Cylinder, Appl. Math. Model. 33 (2009), 2121–2131. https://doi.org/10.1016/j.apm.2008.05.014.
  12. S.S. Elazab, S.A. Rahman, A.A. Hasan, N.A. Zidan, Hydrodynamic Stability of Selfgravitating Streaming Magnetized Fluid Cylinder, Eur. Phys. J. Appl. Phys. 55 (2011), 11101. https://doi.org/10.1051/epjap/2011100485.
  13. A.A. Hasan, Electrogravitational Stability of Oscillating Streaming Fluid Cylinder Ambient with a Transverse Varying Electric Field, Bound. Value Probl. 2011 (2011), 31. https://doi.org/10.1186/1687-2770-2011-31.
  14. M.A.M. Abdeen, A.A. Hasan, MHD Stability of Streaming Jet Using Artificial Intelligence Technique, J. Mech. 28 (2012), 453–459. https://doi.org/10.1017/jmech.2012.54.
  15. A.A. Hasan, R.A. Abdelkhalek, Magnetogravitodynamic Stability of Streaming Fluid Cylinder under the Effect of Capillary Force, Bound. Value Probl. 2013 (2013), 48. https://doi.org/10.1186/1687-2770-2013-48.
  16. B. Hm, Magnetohydrodynamic (MHD) Stability of Oscillating Fluid Cylinder with Magnetic Field, J. Appl. Comp. Math. 04 (2015), 6. https://doi.org/10.4172/2168-9679.1000271.
  17. B. Raphaldini, C.F.M. Raupp, Nonlinear Dynamics of Magnetohydrodynamic Rossby Waves and the Cyclic Nature of Solar Magnetic Activity, Astrophys. J. 799 (2015), 78. https://doi.org/10.1088/0004-637X/799/1/78.
  18. H. M Barakat, Self-Gravitating Stability of a Fluid Cylinder Embedded in a Bounded Liquid, Pervaded by Magnetic Field, for All Symmetric and Asymmetric Perturbation Modes, J. Biosens. Bioelectron. 07 (2016), 4. https://doi.org/10.4172/2155-6210.1000234.
  19. M.H. Hendy, M.M. Amin, Axisymmetric Stability of Self-Gravitating Magnetodynamic of Capillary Bounded Cylinder by Varying Magnetic Field, Adv. Appl. Discrete Math. 18 (2017), 213–235. https://doi.org/10.17654/DM018020213.
  20. M.H. Hendy, Non-Axisymmetric Self-Gravitating Instability of Capillary Incompressible Bounded Cylindrical Hollow Jet, Adv. Differ. Equ. Control Process. 21 (2019), 171–182. https://doi.org/10.17654/DE021020171.
  21. A.M. Wright, S.R. Hudson, R.L. Dewar, M.J. Hole, Resistive Stability of Cylindrical MHD Equilibria with Radially Localized Pressure Gradients, Phys. Plasmas 26 (2019), 062117. https://doi.org/10.1063/1.5099354.
  22. A.A. Hasan, K.S. Mekheimer, B.E. Tantawy, Self-Gravitating Stability of Resistive Streaming Triple Superposed of Fluids Layers under the Influence of Oblique Magnetic Fields, Int. J. Appl. Electromagn. Mech. 63 (2020), 409–419. https://doi.org/10.3233/JAE-190110.
  23. S.Y. Medvedev, A.A. Martynov, A.N. Kozlov, V.V. Savelyev, Galatea Trap: Magnetohydrodynamic Stability of Plasma Surrounding Current-Carrying Conductors, Plasma Phys. Controlled Fusion 62 (2020), 115016. https://doi.org/10.1088/1361-6587/abb79a.
  24. Z. Hussain, R. Zeesahan, M. Shahzad, M. Ali, F. Sultan, et al. An Optimised Stability Model for the Magnetohydrodynamic Fluid, Pramana 95 (2021), 27. https://doi.org/10.1007/s12043-020-02043-3.
  25. H.M. Barakat, The Stability of a Self-Gravitating Force on a Revolving Oscillating Fluid Streaming Jet, Adv. Appl. Fluid Mech. 28 (2022), 1–10. https://doi.org/10.17654/0973468622001.
  26. S.S. Elazab, A.A. Hasan, Z.M. Ismail, R.K. Mohamed, Magnetohydrodynamic Stability of Self-Gravitating Streaming Fluid Cylinder, Inf. Sci. Lett. 12 (2023), 1249–1258. https://doi.org/10.18576/isl/120316.
  27. M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Functions, Dover Publications, New York, 1970.