On the Non-Linearity of S-Type Variable Exponent Absolutely Summable New Difference Sequence Space
Main Article Content
Abstract
This article presents the domain of general quantum difference in Nakano sequence space. Some topological and geometric behavior, the multiplication mappings defined on it, and the spectrum of mapping ideals constructed by this space and s−numbers have been introduced. Existing results are constructed by controlling the general quantum difference and power of this new space, which is a major strength.
Article Details
References
- A. Pietsch, s-Numbers of Operators in Banach Spaces, Studia Math. 51 (1974), 201–223. https://eudml.org/doc/217913.
- A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
- A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
- A. Pietsch, Eigenvalues and s-Numbers, Cambridge University Press, New York. NY, USA, 1986.
- N. Faried, A.A. Bakery, Small Operator Ideals Formed by s Numbers on Generalized Cesaro and Orlicz Sequence Spaces, J. Inequal. Appl. 2018 (2018), 357. https://doi.org/10.1186/s13660-018-1945-y.
- A.E. Hamza, A.-S.M. Sarhan, E.M. Shehata, K.A. Aldwoah, A General Quantum Difference Calculus, Adv. Differ. Equ. 2015 (2015), 182. https://doi.org/10.1186/s13662-015-0518-3.
- H. Kizmaz, On Certain Sequence Spaces, Canadian Math. Bull. 24 (1981), 169–176. https://doi.org/10.4153/CMB-1981-027-5.
- B.M. Makarov, N. Faried, Some Properties of Operator Ideals Constructed by s Numbers, in: Theory of Operators in Functional Spaces, Academy of Science, Siberian section, Novosibirsk, pp. 206–211, 1977.
- M. Basarir, E.E. Kara, On the mth Order Difference Sequence Space of Generalized Weighted Mean and Compact Operators, Acta Math. Sci. 33 (2013), 797–813. https://doi.org/10.1016/s0252-9602(13)60039-9.
- E.E. Kara, M. Basarir, On Compact Operators and Some Euler B (m) -Difference Sequence Spaces, J. Math. Anal. Appl. 379 (2011), 499–511. https://doi.org/10.1016/j.jmaa.2011.01.028.
- M. Mursaleen, F. Basar, Domain of Cesaro Mean of Order One in Some Spaces of Double Sequences, Stud. Sci. Math. Hung. 51 (2014), 335–356. https://doi.org/10.1556/sscmath.51.2014.3.1287.
- M. Mursaleen, A.K. Noman, On Some New Sequence Spaces of Non-Absolute Type Related to the Spaces lp and l∞I, Filomat, 25 (2011), 33–51. https://www.jstor.org/stable/24895537.
- M. Mursaleen, A.K. Noman, On Some New Sequence Spaces of Non-Absolute Type Related to the Spaces lp and l∞II, Math. Commun. 16 (2011), 383–398. https://hrcak.srce.hr/74881.
- T. Yaying, B. Hazarika, M. Mursaleen, On Sequence Space Derived by the Domain of q-Cesàro Matrix in lp Space and the Associated Operator Ideal, J. Math. Anal. Appl. 493 (2021), 124453. https://doi.org/10.1016/j.jmaa.2020.124453.
- B.S. Komal, S. Pandoh, K. Raj, Multiplication Operators on Cesàro Sequence Spaces, Demonstr. Math. 49 (2016), 430–436. https://doi.org/10.1515/dema-2016-0037.
- M. Ilkhan, S. Demiriz, E.E. Kara, Multiplication Operators on Cesàro Second Order Function Spaces, Positivity 24 (2019) 605–614. https://doi.org/10.1007/s11117-019-00700-5.
- H. Roopaei, D. Foroutannia, M. Ilkhan, E.E. Kara, Cesáro Spaces and Norm of Operators on These Matrix Domains, Mediterr. J. Math. 17 (2020), 121. https://doi.org/10.1007/s00009-020-01557-9.
- A.A. Bakery, A.R.A. Elmatty, A Note on Nakano Generalized Difference Sequence Space, Adv. Differ. Equ. 2020 (2020), 620. https://doi.org/10.1186/s13662-020-03082-1.
- A.A. Bakery, M.M. Mohammed, Solutions of Nonlinear Difference Equations in the Domain of (ζn)-Cesàro Matrix in lt(·) of Nonabsolute Type, and Its Pre-Quasi Idea, J. Inequal. Appl. 2021 (2021), 139. https://doi.org/10.1186/s13660-021-02665-0.
- A.A. Bakery, O.S.K. Mohamed, (r1,r2)-Cesàro Summable Sequence Space of Non-Absolute Type and the Involved Pre-Quasi Ideal, J. Inequal. Appl. 2021 (2021), 43. https://doi.org/10.1186/s13660-021-02572-4.
- B. Altay and F. Basar, Generalization of the Sequence Space l(p) Derived by Weighted Means, J. Math. Anal. Appl. 330 (2007), 174–185. https://doi.org/10.1016/j.jmaa.2006.07.050.
- B. E. Rhoades, Operators of A --- p Type, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. Ser. 8, 59 (1975), 238–241. https://eudml.org/doc/290850.
- T. Mrowka, A Brief Introduction to Linear Analysis: Fredholm Operators, Geometry of Manifolds, Fall 2004, Massachusetts Inst. Technol. Press, Cambridge, 2004.
- N.J. Kalton, Spaces of Compact Operators, Math. Ann. 208 (1974), 267–278.