A New Entropy Formula and Gradient Estimates for the Linear Heat Equation on Static Manifold
Main Article Content
Abstract
In this paper we prove a new monotonicity formula for the heat equation via a generalized family of entropy functionals. This family of entropy formulas generalizes both Perelman's entropy for evolving metric and Ni's entropy on static manifold. We show that this entropy satisfies a pointwise differential inequality for heat kernel. The consequences of which are various gradient and Harnack estimates for all positive solutions to the heat equation on compact manifold.
Article Details
References
- A. Abolarinwa, Differential Harnack and logarithmic Sobolev inequalities along RicciHarmonic map flow, To appear
- A. Abolarinwa, Analysis of eigenvalues and conjugate heat kernel under the Ricci flow, PhD Thesis, University of Sussex, (2014).
- D. Bakry, D. Concordet and M. Ledoux, Optimal heat kernel bounds under logarithmic Sobolev inequalities, ESAIM Probab. Statist., 1,(1995), 391-407.
- D. Bakry and M. Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic inequality, Revist. Mat. Iberoamericana 22, (2006), 683-702.
- J. Cheeger and S-T. Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34(4)(1981), 465-480.
- B. Chow, S. Chu, D. Glickenstein, C. Guenther, J. Idenberd. T. Ivey, D. Knopf, P. Lu, F. Luo and L. Ni, The Ricci Flow: Techniques and Applications. Part II, Analytic Aspect, AMS, Providence, RI, (2008).
- E. B. Davies, Heat Kernel and Spectral theory. Cambridge University Press (1989).
- N. Garofalo and E. Lanconelli, Asymptotic behaviour of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann. 283(2)(1989), 211-239.
- L. Gross Logarithmic Sobolev inequalities, America J. Math 97(1)(1975), 1061-1083.
- L. Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups, Dirichlet Form, Lecture Notes in Mathematics Volume 1563, (1993), 54-88.
- R. Hamilton, A matrix Harnack estimate for the heat equation, Commun. Anal. Geom., 1, (1993), 113-126.
- G. Huang, Z. Huang, H. Li, Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Ann. Glob. Anal. Geom., 23(3) (1993), 209-232.
- S. Kuang, Qi S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255(4)( 2008), 1008-1023.
- J. Li, X. Xu, Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation, Advances in Math., 226 (2011), 4456-4491.
- P. Li, S-T. Yau, On the parabolic kernel of the Schr ¨odinger operator, Acta Math. 156 (1986), 153-201
- R. M ¨uller, Differential Harnack Inequalities and the Ricci Flow. European Mathematics Society, (2006).
- L. Ni, The Entropy Formula for Linear Heat Equation, Journal of Geom. Analysis 14(2)(2004), 86-96
- L. Ni, Addenda to ”The Entropy Formula for Linear Heat Equation”, Journal of Geom. Analysis 14(2)(2004), 229-334.
- L. Ni, A note on Perelman's Li-Yau-Hamilton inequality, Comm. Anal. Geom 14(2006), 883-905.
- G. Perelman, The entropy formula for the Ricci flow and its geometric application, arXiv:math.DG/0211159v1 (2002).
- P. Souplet, Qi S. Zhang, Sharp gradient estimate and Yaus Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38(2006), 1045-1053.
- F. B. Weissler, Logarithmic Sobolev Inequalities for the Heat-Diffusion Semigroup, Trans Am Math. Soc., 237(1978), 255-269.