Fixed Point Theorems on ℵ-Extended Fuzzy Bipolar b-Metric Spaces

Main Article Content

Uma Maheswari Jeevanandam, Dillibabu Kathavarayan, Sathya Bama Raveendran, Fatima Azmi, Nabil Mlaiki

Abstract

In this paper, we introduce the context of ℵ-Extended fuzzy bipolar b-metric space and prove fixed point theorem. Some of the well-known results in the literature are expanded and generalized by our research. Additionally, we presented applications to integral equation and fractional differential equation.

Article Details

References

  1. B. Schweizer, A. Sklar, Statistical Metric Spaces, Pac. J. Math. 10 (1960), 313–334.
  2. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  3. I. Kramosil, J. Michalek, Fuzzy Metric and Statistical Metric Spaces, Kybernetica 11 (1975), 326–334. http://dml.cz/dmlcz/125556.
  4. A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
  5. M. Grabiec, Fixed Points in Fuzzy Metric Spaces, Fuzzy Sets Syst. 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4.
  6. V. Gregori, A. Sapena, On Fixed-Point Theorems in Fuzzy Metric Spaces, Fuzzy Sets Syst. 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9.
  7. A. Mutlu, U. Gürdal, Bipolar Metric Spaces and Some Fixed Point Theorems, J. Nonlinear Sci. Appl. 09 (2016), 5362–5373. https://doi.org/10.22436/jnsa.009.09.05.
  8. A. Bartwal, R.C. Dimri, G. Prasad, Some Fixed Point Theorems in Fuzzy Bipolar Metric Spaces, J. Nonlinear Sci. Appl. 13 (2020), 196–204. https://doi.org/10.22436/jnsa.013.04.04.
  9. M.S. Sezen, Controlled Fuzzy Metric Spaces and Some Related Fixed Point Results, Numer. Methods Partial Differ. Equ. 37 (2021), 583–593. https://doi.org/10.1002/num.22541.
  10. G. Mani, A.J. Gnanaprakasam, L. Guran, R. George, Z.D. Mitrovi´c, Some Results in Fuzzy B-Metric Space with b-Triangular Property and Applications to Fredholm Integral Equations and Dynamic Programming, Mathematics 11 (2023), 4101. https://doi.org/10.3390/math11194101.
  11. G. Mani, A.J. Gnanaprakasam, O. Ege, A. Aloqaily, N. Mlaiki, Fixed Point Results in C ∗ -Algebra-Valued Partial b-Metric Spaces with Related Application, Mathematics 11 (2023), 1158. https://doi.org/10.3390/math11051158.
  12. G. Mani, S. Haque, A.J. Gnanaprakasam, O. Ege, N. Mlaiki, The Study of Bicomplex-Valued Controlled Metric Spaces with Applications to Fractional Differential Equations, Mathematics 11 (2023), 2742. https://doi.org/10.3390/math11122742.
  13. A.J. Gnanaprakasam, G. Mani, O. Ege, A. Aloqaily, N. Mlaiki, New Fixed Point Results in Orthogonal B-Metric Spaces with Related Applications, Mathematics 11 (2023), 677. https://doi.org/10.3390/math11030677.
  14. G. Nallaselli, A.J. Gnanaprakasam, G. Mani, Z.D. Mitrovi´c, A. Aloqaily, N. Mlaiki, Integral Equation via Fixed Point Theorems on a New Type of Convex Contraction in B-Metric and 2-Metric Spaces, Mathematics 11 (2023), 344. https://doi.org/10.3390/math11020344.
  15. B. Ramalingam, O. Ege, A. Aloqaily, N. Mlaiki, Fixed-Point Theorems on Fuzzy Bipolar b-Metric Spaces, Symmetry 15 (2023), 1831. https://doi.org/10.3390/sym15101831.
  16. M. Younis, A.A.N. Abdou, Novel Fuzzy Contractions and Applications to Engineering Science, Fractal Fract. 8 (2023), 28. https://doi.org/10.3390/fractalfract8010028.
  17. S.Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Equ. 2006 (2006), 36.
  18. I. Beg, A.J. Gnanaprakasam, G. M, Common Coupled Fixed Point Theorem on Fuzzy Bipolar Metric Spaces, Int. J. Nonlinear Anal. Appl. 14 (2023), 77–85. https://doi.org/10.22075/ijnaa.2023.27787.3712.