A New Operational Matrices Based-Technique for Fractional Integro Reaction-Diffusion Equation Involving Spatiotemporal Variable-Order Derivative

Main Article Content

Moustafa Ahmed, Hoda F. Ahmed, W. A. Hashem

Abstract

In this article, a novel generalized model of the nonlinear fractional integro-reaction-diffusion equation (NFIRDE) with spatiotemporal variable-order (SVO) is introduced, where the variable order derivatives are equipped with the Atangana–Baleanu–Caputo (ABC) sense. This model represents a great generalization of a significant type of NFIRDE and their applications. Moreover, A novel, efficient and fully spectral shifted Legendre tau technique is developed to solve the proposed model. Despite the difficulty of applying this mechanism to solve this type of equations, due to the presence of nonlinear terms and the SVO functions that appear in the traditional differential and integral operational matrices. We deduce some new operational matrices that play the fundamental role in facilitating the implementation of the tau method. These operational matrices represent the SVO ABC-derivative, the integro term within the model, as well as the vector multiplications with the space-time Kronecker product. As a result, the proposed model is restructured into a system of nonlinear algebraic equations, which simplifying the solving process. We illustrate our method’s effectiveness and validity with numerical examples with both smooth and non-smooth solutions. Our findings show that the proposed tau method delivers accurate results and exhibits non-local properties.

Article Details

References

  1. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, 1998.
  2. H.F. Ahmed, W.A. Hashem, Novel and Accurate Gegenbauer Spectral Tau Algorithms for Distributed Order Nonlinear Time-Fractional Telegraph Models in Multi-Dimensions, Commun. Nonlinear Sci. Numer. Simul. 118 (2023), 107062. https://doi.org/10.1016/j.cnsns.2022.107062.
  3. L. Li, Z. Chen, H. Du, W. Jiang, B. Zhang, A Meshless Approach Based on Fractional Interpolation Theory and Improved Neural Network Bases for Solving Non-Smooth Solution of 2D Fractional Reaction–Diffusion Equation with Distributed Order, Commun. Nonlinear Sci. Numer. Simul. 138 (2024), 108245. https://doi.org/10.1016/j.cnsns.2024.108245.
  4. MM. Izadi, D. Baleanu, An Effective QLM-Based Legendre Matrix Algorithm to Solve the Coupled System of Fractional-Order Lane-Emden Equations, Appl. Numer. Math. 201 (2024), 608–627. https://doi.org/10.1016/j.apnum.2023.12.004.
  5. W. Hundsdorfer, J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, Berlin, 2003. https://doi.org/10.1007/978-3-662-09017-6.
  6. F. Liu, V. Anh, I. Turner, Numerical Solution of the Space Fractional Fokker–Planck Equation, J. Comp. Appl. Math. 166 (2004), 209–219. https://doi.org/10.1016/j.cam.2003.09.028.
  7. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Dover Publications, New York, 2003.
  8. T. Zhao, L. Zhao, Jacobian Spectral Collocation Method for Spatio-Temporal Coupled Fokker-Planck Equation with Variable-Order Fractional Derivative, Commun. Nonlinear Sci. Numer. Simul. 124 (2023), 107305. https://doi.org/10.1016/j.cnsns.2023.107305.
  9. J. Liu, X. Li, X. Hu, A RBF-Based Differential Quadrature Method for Solving Two-Dimensional Variable-Order Time Fractional Advection-Diffusion Equation, J. Comp. Phys. 384 (2019), 222–238. https://doi.org/10.1016/j.jcp.2018.12.043.
  10. M.H. Heydari, Z. Avazzadeh, Chebyshev–Gauss–Lobatto Collocation Method for Variable-Order Time Fractional Generalized Hirota–Satsuma Coupled KdV System, Eng. Comp. 38 (2022), 1835–1844. https://doi.org/10.1007/s00366-020-01125-5.
  11. H.G. Sun, W. Chen, H. Wei, Y.Q. Chen, A Comparative Study of Constant-Order and Variable-Order Fractional Models in Characterizing Memory Property of Systems, Eur. Phys. J. Spec. Topics 193 (2011), 185–192. https://doi.org/10.1140/epjst/e2011-01390-6.
  12. A. Habibirad, R. Roohi, E. Hesameddini, M.H. Heydari, A Reliable Algorithm to Determine the Pollution Transport within Underground Reservoirs: Implementation of an Efficient CollocationMeshlessMethod Based on theMoving Kriging Interpolation, Eng. Comp. 38 (2022), 2781–2795. https://doi.org/10.1007/s00366-021-01430-7.
  13. L.E.S. Ramirez, C.F.M. Coimbra, On the Variable Order Dynamics of the Nonlinear Wake Caused by a Sedimenting Particle, Physica D: Nonlinear Phen. 240 (2011), 1111–1118. https://doi.org/10.1016/j.physd.2011.04.001.
  14. N. Jacob, H.G. Leopold, Pseudo Differential Operators with Variable Order of Differentiation Generating Feller Semigroups, Integr. Equ. Oper. Theory 17 (1993), 544–553. https://doi.org/10.1007/BF01200393.
  15. O.T. Kolebaje, O.R. Vincent, U.E. Vincent, P.V.E. McClintock, Nonlinear Growth and Mathematical Modelling of COVID-19 in Some African Countries with the Atangana–Baleanu Fractional Derivative, Commun. Nonlinear Sci. Numer. Simul. 105 (2022), 106076. https://doi.org/10.1016/j.cnsns.2021.106076.
  16. C. Li, J. Liu, T. He, Fractional-Order Rate-Dependent Thermoelastic Diffusion Theory Based on New Definitions of Fractional Derivatives with Non-Singular Kernels and the Associated Structural Transient Dynamic Responses Analysis of Sandwich-like Composite Laminates, Commun. Nonlinear Sci. Numer. Simul. 132 (2024), 107896. https://doi.org/10.1016/j.cnsns.2024.107896.
  17. A. Atangana, D. Baleanu, New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model, arXiv:1602.03408 [math.GM] (2016). http://arxiv.org/abs/1602.03408
  18. A. Atangana, J.F. Gómez-Aguilar, Fractional Derivatives with No-Index Law Property: Application to Chaos and Statistics, Chaos Solitons Fractals 114 (2018), 516–535. https://doi.org/10.1016/j.chaos.2018.07.033.
  19. J. Hristov, On the Atangana–Baleanu Derivative and Its Relation to the Fading Memory Concept: The Diffusion Equation Formulation, in: J.F. Gómez, L. Torres, R.F. Escobar (Eds.), Fractional Derivatives with Mittag-Leffler Kernel, Springer, Cham, 2019: pp. 175–193. https://doi.org/10.1007/978-3-030-11662-0_11.
  20. U. Ali, H. Ahmad, J. Baili, T. Botmart, M.A. Aldahlan, Exact Analytical Wave Solutions for Space-Time VariableOrder Fractional Modified Equal Width Equation, Results Phys. 33 (2022), 105216. https://doi.org/10.1016/j.rinp.2022.105216.
  21. S. Kumar, P. Pandey, Quasi Wavelet Numerical Approach of Non-Linear Reaction Diffusion and Integro ReactionDiffusion Equation with Atangana–Baleanu Time Fractional Derivative, Chaos Solitons Fractals 130 (2020), 109456. https://doi.org/10.1016/j.chaos.2019.109456.
  22. S. Kondo, How Animals Get Their Skin Patterns: Fish Pigment Pattern as a Live Turing Wave, in: S. Nakanishi, R. Kageyama, D. Watanabe (Eds.), Systems Biology, Springer Japan, Tokyo, 2009: pp. 37–46. https://doi.org/10.1007/978-4-431-87704-2_4.
  23. H. Wilhelmsson, E. Lazzaro, Reaction-Diffusion Problems in the Physics of Hot Plasmas, CRC Press, 2000.
  24. J.D. Murray, ed., Mathematical Biology: II: Spatial Models and Biomedical Applications, Springer, New York, 2003. https://doi.org/10.1007/b98869.
  25. S. Guo, L. Mei, Y. Li, An Efficient Galerkin Spectral Method for Two-Dimensional Fractional Nonlinear Reaction–Diffusion-Wave Equation, Comp. Math. Appl. 74 (2017), 2449–2465. https://doi.org/10.1016/j.camwa.2017.07.022.
  26. A.S. Hendy, L. Qiao, A. Aldraiweesh, M.A. Zaky, Optimal Spectral Galerkin Approximation for Time and Space Fractional Reaction-Diffusion Equations, Appl. Numer. Math. 201 (2024), 118–128. https://doi.org/10.1016/j.apnum.2024.02.013.
  27. S. Maji, S. Natesan, Analytical and Numerical Solutions of Time-Fractional Advection-Diffusion-Reaction Equation, Appl. Numer. Math. 185 (2023), 549–570. https://doi.org/10.1016/j.apnum.2022.12.013.
  28. M. Hajipour, A. Jajarmi, D. Baleanu, H. Sun, On an Accurate Discretization of a Variable-Order Fractional ReactionDiffusion Equation, Commun. Nonlinear Sci. Numer. Simul. 69 (2019), 119–133. https://doi.org/10.1016/j.cnsns.2018.09.004.
  29. S. Kumar, P. Pandey, Quasi Wavelet Numerical Approach of Non-Linear Reaction Diffusion and Integro ReactionDiffusion Equation with Atangana–Baleanu Time Fractional Derivative, Chaos Solitons Fractals 130 (2020), 109456. https://doi.org/10.1016/j.chaos.2019.109456.
  30. H.-D. Qu, X. Liu, X. Lu, M. Ur Rahman, Z.-H. She, Neural Network Method for Solving Nonlinear Fractional Advection-Diffusion Equation with Spatiotemporal Variable-Order, Chaos Solitons Fractals 156 (2022), 111856. https://doi.org/10.1016/j.chaos.2022.111856.
  31. S. Kumar, Crank-Nicolson Quasi-Wavelet Method for the Numerical Solution of Variable-Order Time-Space Riesz Fractional Reaction-Diffusion Equation, in: Applications of Fractional Calculus to Modeling in Dynamics and Chaos, Chapman and Hall/CRC, pp. 407–428, 2022.
  32. H.F. Ahmed, W.A. Hashem, A Fully Spectral Tau Method for a Class of Linear and Nonlinear Variable-Order Time-Fractional Partial Differential Equations in Multi-Dimensions, Math. Comp. Simul. 214 (2023), 388–408. https://doi.org/10.1016/j.matcom.2023.07.023.
  33. H.F. Ahmed, M.B. Melad, A New Numerical Strategy for Solving Nonlinear Singular Emden-Fowler Delay Differential Models with Variable Order, Math. Sci. 17 (2023), 399–413. https://doi.org/10.1007/s40096-022-00459-z.
  34. F. Asadi-Mehregan, P. Assari, M. Dehghan, Numerical Simulation of Spatio-Temporal Spread of an Infectious Disease Utilizing a Collocation Method Based on Local Radial Basis Functions, Eng. Comp. 40 (2024), 2473–2496. https://doi.org/10.1007/s00366-023-01924-6.
  35. M.H. Heydari, A. Atangana, Z. Avazzadeh, M.R. Mahmoudi, An Operational Matrix Method for Nonlinear Variable-Order Time Fractional Reaction–Diffusion Equation Involving Mittag-Leffler Kernel, Eur. Phys. J. Plus 135 (2020), 237. https://doi.org/10.1140/epjp/s13360-020-00158-5.
  36. S. Kumar, J. Cao, X. Li, A Numerical Method for Time-Fractional Reaction-Diffusion and Integro Reaction-Diffusion Equation Based on Quasi-Wavelet, Complexity 2020 (2020), 3291723. https://doi.org/10.1155/2020/3291723.
  37. M.Y. Hussaini, T.A. Zang, Spectral Methods in Fluid Dynamics, Ann. Rev. Fluid Mech. 19 (1987), 339–367. https://doi.org/10.1146/annurev.fl.19.010187.002011.
  38. M.A. Zaky, An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid, Comp. Math. Appl. 75 (2018), 2243–2258. https://doi.org/10.1016/j.camwa.2017.12.004.