A Review on Mathematical Methods to Approximate µ-Values

Main Article Content

Mutti-Ur Rehman, Sukhrob Babaev

Abstract

In this article, we review a number of iterative and analytical techniques to approximate structured singular values or µ-values which is a straightforward generalization of singular values for square and rectangular matrices. The µ-value is a well-known tool which acts as a strong link between numerical linear algebra and control theory. The computation of structured singular value provides a platform to study and discuss stability, performance, and robustness of the system. Furthermore, we review some very important literature that discusses the applications of structured singular values in different areas of engineering.

Article Details

References

  1. J. Doyle, Analysis of Feedback Systems with Structured Uncertainties, IEE Proc. D Control Theory Appl. 129 (1982), 242–250. https://doi.org/10.1049/ip-d.1982.0053.
  2. R.P. Braatz, P.M. Young, J.C. Doyle, M. Morari, Computational Complexity of µ Calculation, IEEE Trans. Autom. Control 39 (1994), 1000–1002. https://doi.org/10.1109/9.284879.
  3. N. Guglielmi, M.U. Rehman, D. Kressner, A Novel Iterative Method To Approximate Structured Singular Values, SIAM J. Matrix Anal. Appl. 38 (2017), 361–386. https://doi.org/10.1137/16M1074977.
  4. M.F. Anwar, M.U. Rehman, Numerical Computation of Lower Bounds of Structured Singular Values, Eur. J. Pure Appl. Math. 11 (2018), 844–868. https://doi.org/10.29020/nybg.ejpam.v11i3.3301.
  5. M.U. Rehman, M.F. Anwar, Computing µ-Values for Representations of Symmetric Groups in Engineering Systems, Eur. J. Pure Appl. Math. 11 (2018), 774–792. https://doi.org/10.29020/nybg.ejpam.v11i3.3258.
  6. M.U. Rehman, M.F. Anwar, Computing Lower Bounds of µ-Values for a Class of Rotary Electrical Machines, Int. J. Anal. Appl. 17 (2019), 33–46. https://doi.org/10.28924/2291-8639-17-2019-33.
  7. M.U. Rehman, S. Tabassum, Numerical Computation of Structured Singular Values for Companion Matrices, J. Appl. Math. Phys. 05 (2017), 1057–1072. https://doi.org/10.4236/jamp.2017.55093.
  8. R.L. Dailey, A New Algorithm for the Real Structured Singular Value, in: 1990 American Control Conference, IEEE, San Diego, CA, USA, 1990: pp. 3036–3040. https://doi.org/10.23919/ACC.1990.4791276.
  9. A. Yazıcı, A. Karamancıo ˘glu, R. Kasimbeyli, A Nonlinear Programming Technique to Compute a Tight Lower Bound for the Real Structured Singular Value, Optim. Eng. 12 (2011), 445–458. https://doi.org/10.1007/s11081-010-9120-4.
  10. J. Kim, D.G. Bates, I. Postlethwaite, A Geometrical Formulation of the µ-Lower Bound Problem, IET Control Theory Appl. 3 (2009), 465–472. https://doi.org/10.1049/iet-cta.2007.0391.
  11. A. Fabrizi, C. Roos, J.-M. Biannic, A Detailed Comparative Analysis of µ Lower Bound Algorithms, in: 2014 European Control Conference (ECC), IEEE, Strasbourg, France, 2014: pp. 220–226. https://doi.org/10.1109/ECC.2014.6862465.
  12. P.M. Young, J.C. Doyle, A Lower Bound for the Mixed µ Problem, IEEE Trans. Autom. Control 42 (1997), 123–128. https://doi.org/10.1109/9.553696.
  13. Seiler, Pete and Packard, Andrew and Balas, Gary J, A gain-based lower bound algorithm for real and mixed µ problems, Automatica-Elsevier, 46 (2010), 493–500. https://doi.org/10.1109/CDC.2006.377123.
  14. A. Packard, G. Balas, R. Liu, Jong-Yeob Shin, Results on Worst-Case Performance Assessment, in: Proceedings of the 2000 American Control Conference, IEEE, Chicago, IL, USA, 2000: pp. 2425–2427. https://doi.org/10.1109/ACC.2000.878616.
  15. J. Dehaene, Cheng Yi, B. De Moor, Calculation of the Structured Singular Value with Gradient-Based Optimization Algorithms on a Lie Group of Structured Unitary Matrices, IEEE Trans. Autom. Control 42 (1997), 1596–1600. https://doi.org/10.1109/9.649732.
  16. A. Sideris, R.S.S. Pena, Robustness Margin Calculation with Dynamic and Real Parametric Uncertainty, in: 1988 American Control Conference, IEEE, Atlanta, GA, USA, 1988: pp. 1201–1206. https://doi.org/10.23919/ACC.1988.4789903.
  17. L.A. Zadeh, C.A. Desoer, Linear System Theory, McGraw Hill, New York, (1964).
  18. M. Elgersma, J. Freudenberg, B. Morton, Polynomial Methods for the Structured Singular Value with Real Parameters, Int. J. Robust Nonlinear Control 6 (1996), 147–170. https://doi.org/10.1002/(SICI)1099-1239(199603)6:2<147::AID-RNC143>3.0.CO;2-J.
  19. J.-F. Magni, C. Döll, C. Chiappa, B. Frapard, B. Girouart, Mixed-µ-Analysis for Flexible Systems. Part I: Theory 1, IFAC Proc. Vol. 32 (1999), 8003–8008. https://doi.org/10.1016/S1474-6670(17)57365-6.
  20. A. Packard, P. Pandey, Continuity Properties of the Real/Complex Structured Singular Value, IEEE Trans. Autom. Control 38 (1993), 415–428. https://doi.org/10.1109/9.210140.
  21. R. Kasimbeyli, O. Ustun, A.M. Rubinov, The Modified Subgradient Algorithm Based on Feasible Values, Optimization 58 (2009), 535–560. https://doi.org/10.1080/02331930902928419.
  22. P. Seiler, G. Balas, A. Packard, A Gain-Based Lower Bound Algorithm for Real and Mixed µ Problems, in: Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, San Diego, CA, 2006: pp. 3548–3553. https://doi.org/10.1109/CDC.2006.377123.
  23. M.J. Hayes, D.G. Bates, I. Postlethwaite, New Tools for Computing Tight Bounds on the Real Structured Singular Value, J. Guid. Control Dyn. 24 (2001), 1204–1213. https://doi.org/10.2514/2.4836.
  24. D. Piga, Computation of the Structured Singular Value via Moment LMI Relaxations, IEEE Trans. Autom. Control 61 (2015), 520–525. https://doi.org/10.1109/TAC.2015.2438452.