Systems of Linear Equations in Generalized b-Metric Spaces

Main Article Content

Ahmad Aloqaily

Abstract

This paper introduces a pioneering concept in the realm of metric spaces, specifically focusing on a novel category termed controlled generalized b-metric spaces (CGbMS). The study delves into the investigation of fixed points within CGbMS for self-mappings that exhibit both linear and non-linear contraction characteristics. The analysis establishes the existence and uniqueness of such fixed points, contributing valuable insights into the properties of these spaces. Moreover, the paper extends its impact by exploring diverse applications and implementations derived from the established results. One notable application is the application of these findings in solving systems of linear equations. The comprehensive examination of these applications not only underscores the practical significance of the proposed concept but also offers a broader understanding of its potential utility in various mathematical contexts. In summary, this research not only introduces and rigorously defines the concept of controlled generalized b-metric spaces but also provides a robust theoretical foundation by establishing the existence and uniqueness of fixed points. The exploration of applications, with a focus on solving linear equations, further highlights the practical implications and versatility of the proposed framework within the broader mathematical landscape.

Article Details

References

  1. M. Jleli, B. Samet, A Generalized Metric Space and Related Fixed Point Theorems, Fixed Point Theory Appl. 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7.
  2. N. Souayah, N. Mlaiki, S. Haque, D. Rizk, A.S. Baazeem, W. Shatanawi, A New Type of Three Dimensional Metric Spaces with Applications to Fractional Differential Equations, AIMS Math. 7 (2022), 17802–17814. https://doi.org/10.3934/math.2022980.
  3. S. Czerwik, Contraction Mappings in b-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11. https://eudml.org/doc/23748.
  4. P. Hitzler, A.K. Seda, Dislocated Topologies, J. Electr. Eng. 51 (2000), 3–7.
  5. S. Banach, Sur les Opérations dans les Ensembles Abstraits et leur Application aux Équations Intégrales, Fundamenta Mathematicae 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  6. A.J. Gnanaprakasam, G. Mani, O. Ege, A. Aloqaily, N. Mlaiki, New Fixed Point Results in Orthogonal B-Metric Spaces with Related Applications, Mathematics 11 (2023), 677. https://doi.org/10.3390/math11030677.
  7. N. Savanovi´c, I.D. Arandelovi´c, Z.D. Mitrovi´c, The Results on Coincidence and Common Fixed Points for a New ¯ Type Multivalued Mappings in b-Metric Spaces, Mathematics 10 (2022), 856. https://doi.org/10.3390/math10060856.
  8. W. Shatanawi, A. Pitea, Best Proximity Point and Best Proximity Coupled Point in a Complete Metric Space with (P)-Property, Filomat 29 (2015), 63–74. https://doi.org/10.2298/FIL1501063S.
  9. T. Van An, N. Van Dung, Z. Kadelburg, S. Radenovi´c, Various Generalizations of Metric Spaces and Fixed Point Theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 109 (2015), 175–198. https://doi.org/10.1007/s13398-014-0173-7.
  10. M. Wang, N. Saleem, X. Liu, A.H. Ansari, M. Zhou, Fixed Point of (α, β)-Admissible Generalized Geraghty F-Contraction with Application, Symmetry 14 (2022), 1016. https://doi.org/10.3390/sym14051016.
  11. W. Shatanawi, Z. Mustafa, N. Tahat, Some Coincidence Point Theorems for Nonlinear Contraction in Ordered Metric Spaces, Fixed Point Theory Appl. 2011 (2011), 68. https://doi.org/10.1186/1687-1812-2011-68.
  12. A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sahmim, W. Shatanawi, On Common Fixed Points for α − F-Contractions and Applications, J. Nonlinear Sci. Appl. 09 (2016), 3445–3458. https://doi.org/10.22436/jnsa.009.05.128.
  13. S.G. Matthews, Partial Metric Topology, Ann. N. Y. Acad. Sci. 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x.
  14. R. Pant, R. Shukla, H.K. Nashine, R. Panicker, Some New Fixed Point Theorems in Partial Metric Spaces with Applications, J. Funct. Spaces 2017 (2017), 1072750. https://doi.org/10.1155/2017/1072750.
  15. V. Berinde, M. P ˘acurar, 2022. The Early Developments in Fixed Point Theory on b-Metric Spaces, Carpathian J. Math. 38 (2022), 523–538. https://www.jstor.org/stable/27150504.
  16. D. Santina, W.A. Mior Othman, K.B. Wong, N. Mlaiki, New Generalization of Metric-Type Spaces-Strong Controlled, Symmetry 15 (2023), 416. https://doi.org/10.3390/sym15020416.
  17. A. Aloqaily, D.S. Sagheer, I. Urooj, S. Batul, N. Mlaiki, Solving Integral Equations via Hybrid Interpolative < =-Type Contractions in b-Metric Spaces, Symmetry 15 (2023), 465. https://doi.org/10.3390/sym15020465.
  18. I.A. Bakhtin, The Contraction Mapping Principle in Quasi-Metric Spaces, Funct. Anal. 30 (1989), 26–37.
  19. L.C. Ceng, C.F. Wen, Y.C. Liou, J.C. Yao, A General Class of Differential Hemivariational Inequalities Systems in Reflexive Banach Spaces, Mathematics 9 (2021), 3173. https://doi.org/10.3390/math9243173.
  20. M. Jleli, E. Karapınar, B. Samet, Further Generalizations of the Banach Contraction Principle, J. Inequal. Appl. 2014 (2014), 439. https://doi.org/10.1186/1029-242X-2014-439.
  21. A. Aloqaily, N. Souayah, K. Matawie, N. Mlaiki, W. Shatanawi, A New Best Proximity Point Results in Partial Metric Spaces Endowed with a Graph, Symmetry 15 (2023), 611. https://doi.org/10.3390/sym15030611.
  22. T. Abdeljawad, E. Karapınar, K. Ta¸s, Existence and Uniqueness of a Common Fixed Point on Partial Metric Spaces, Appl. Math. Lett. 24 (2011), 1900–1904. https://doi.org/10.1016/j.aml.2011.05.014.
  23. K. Shah, T. Abdeljawad, B. Abdalla, M.S. Abualrub, Utilizing Fixed Point Approach to Investigate Piecewise Equations with Non-Singular Type Derivative, AIMS Math. 7 (2022), 14614–14630. https://doi.org/10.3934/math.2022804.