Uncertainty Principles for the Fractional Dunkl Transform
Main Article Content
Abstract
In this paper, we examine the Donoho–Stark uncertainty principle in the context of the fractional Dunkl transform. We rigorously derive a formulation of the Donoho–Stark uncertainty principle for the fractional Dunkl transform and provide an application that illustrates its practical significance. Furthermore, we introduce a signal restoration algorithm tailored for the fractional Dunkl transform.
Article Details
References
- F. Bahba, A. Saoudi, On the Fractional Opdam–Cherednik Transform, J. Anal. 32 (2024), 3047–3063. https://doi.org/10.1007/s41478-024-00772-x.
- E.U. Condon, Immersion of the Fourier Transform in a Continuous Group of Functional Transformations, Proc. Natl. Acad. Sci. 23 (1937), 158–164. https://doi.org/10.1073/pnas.23.3.158.
- C.F. Dunkl, Differential-Difference Operators Associated to Reflection Groups, Trans. Am. Math. Soc. 311 (1989), 167–183. https://doi.org/10.1090/S0002-9947-1989-0951883-8.
- C.F. Dunkl, Integral Kernels with Reflection Group Invariance, Can. J. Math. 43 (1991), 1213–1227. https://doi.org/10.4153/CJM-1991-069-8.
- C.F. Dunkl, Hankel Transforms Associated to Finite Reflection Groups, Contemp. Math. 138 (1992), 123–138. https://doi.org/10.1090/conm/138/1199124.
- S. Ghazouani, F. Bouzeffour, Heisenberg Uncertainty Principle for a Fractional Power of the Dunkl Transform on the Real Line, J. Comput. Appl. Math. 294 (2016), 151–176. https://doi.org/10.1016/j.cam.2015.06.013.
- I. Haouala, A. Saoudi, Fractional Jacobi-Dunkl Transform: Properties and Application, Fract. Calc. Appl. Anal. 25 (2022), 2313–2331. https://doi.org/10.1007/s13540-022-00102-7.
- I. Kallel, A. Saoudi, Uncertainty Principle for the Weinstein-Gabor Transforms, Int. J. Anal. Appl. 22 (2024), 94. https://doi.org/10.28924/2291-8639-22-2024-94.
- F.H. Kerr, A fractional power theory for Hankel transform in L 2 (R+), J. Math. Anal. Appl. 158 (1991), 114–123. https://doi.org/10.1016/0022-247X(91)90271-Z.
- A.C. McBRIDE, F.H. Kerr, On Namias’s Fractional Fourier Transforms, IMA J. Appl. Math. 39 (1987), 159–175. https://doi.org/10.1093/imamat/39.2.159.
- H.B. Mohamed, A. Saoudi, Linear Canonical Fourier–Bessel Wavelet Transform: Properties and Inequalities, Integr. Transf. Spec. Funct. 35 (2024), 270–290. https://doi.org/10.1080/10652469.2024.2317724.
- V. Namias, The Fractional Order Fourier Transform and Its Application to Quantum Mechanics, IMA J. Appl. Math. 25 (1980), 241–265. https://doi.org/10.1093/imamat/25.3.241.
- M. Rösler, Dunkl Operators: Theory and Applications, in: E. Koelink, W. Van Assche (Eds.), Orthogonal Polynomials and Special Functions, Springer, Berlin, Heidelberg, 2003: pp. 93–135. https://doi.org/10.1007/3-540-44945-0_3.
- A. Saoudi, A Variation of L p Uncertainty Principles in Weinstein Setting, Indian J. Pure Appl. Math. 51 (2020), 1697–1712. https://doi.org/10.1007/s13226-020-0490-9.
- A. Saoudi, Time-Scale Localization Operators in the Weinstein Setting, Results Math. 78 (2023), 14. https://doi.org/10.1007/s00025-022-01792-4.
- A. Saoudi, Hardy Type Theorems for Linear Canonical Dunkl Transform, Complex Anal. Oper. Theory 18 (2024), 57. https://doi.org/10.1007/s11785-023-01478-x.
- A. Saoudi and I.A. Kallel, A Variation of L p Local Uncertainty Principles for Weinstein Transform, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 25 (2024), 3–10. https://doi.org/10.59277/PRA-SER.A.25.1.01.
- A. Touati, I. Kallel, A. Saoudi, Uncertainty Principles for the Weinstein Wavelet Transform, International Journal of Analysis and Applications 22 (2024), 211. https://doi.org/10.28924/2291-8639-22-2024-211.
- G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 2006.
- N. Wiener, Hermitian Polynomials and Fourier Analysis, J. Math. Phys. 8 (1929), 70–73. https://doi.org/10.1002/sapm19298170.