A New Class of Generalized Starlike Bi-Univalent Functions Subordinated to Legendre Polynomials

Main Article Content

Waleed Al-Rawashdeh

Abstract

A new class of generalized starlike bi-univalent functions is introduced in this paper, which is defined using Legendre Polynomials within the open unit disk D. This paper sheds a light on the properties and behaviors of these starlike bi-univalent functions, providing estimations for the modulus of the initial Taylor series coefficients of the functions falling under this particular class and one of its various subclasses. Additionally, this paper also investigates the classical Fekete-Szegö functional problem for functions f that are part of the aforementioned class. Moreover, we obtain the classical Fekete-Szegö inequalities of functions belonging to this class and to one of its various subclasses.

Article Details

References

  1. V. Aboites, Easy Route to Tchebycheff Plynomials, Rev. Mex. Fís. E. 65 (2019), 12–14. https://doi.org/10.31349/RevMexFisE.65.12.
  2. W. Al-Rawashdeh, Fekete-Szegö Functional of a Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials, Eur. J. Pure Appl. Math. 17 (2024), 105–115. https://doi.org/10.29020/nybg.ejpam.v17i1.5004.
  3. W. Al-Rawashdeh, Applications of Gegenbauer Polynomials to a Certain Subclass of P-Valent Functions, WSEAS Trans. Math. 22 (2023), 1025–1030. https://doi.org/10.37394/23206.2023.22.111.
  4. W. Al-Rawashdeh, Horadam Polynomials and a Class of Biunivalent Functions Defined by Ruscheweyh Operator, Int. J. Math. Math. Sci. 2023 (2023), 2573044. https://doi.org/10.1155/2023/2573044.
  5. D.A. Brannan, J.G. Clunie, Aspects of Contemporary Complex Analysis, in: Proceedings of the NATO Advanced Study Institute, University of Durham, Durham, Academic Press, 1979. https://lccn.loc.gov/80040887.
  6. M. Ça ˘glar, H. Orhan, M. Kamali, Fekete-Szegö Problem for a Subclass of Analytic Functions Associated with Chebyshev Polynomials, Bol. Soc. Paran. Mat. 40 (2022), 1–6. https://doi.org/10.5269/bspm.51024.
  7. Y. Cheng, R. Srivastava, J.L. Liu, Applications of the Q-Derivative Operator to New Families of Bi-Univalent Functions Related to the Legendre Polynomials, Axioms 11 (2022), 595. https://doi.org/10.3390/axioms11110595.
  8. J.H. Choi, Y.C. Kim, T. Sugawa, A General Approach to the Fekete-Szegö Problem, J. Math. Soc. Japan 59 (2007), 707–727. https://doi.org/10.2969/jmsj/05930707.
  9. N.E. Cho, V. Kumar, S.S. Kumar, V. Ravichandran, Radius Problems for Starlike Functions Associated with the Sine Function, Bull. Iran. Math. Soc. 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5.
  10. P.L. Duren, Univalent Functions, Springer, New York, 1983.
  11. P. Duren, Subordination, in: J.D. Buckholtz, T.J. Suffridge (Eds.), Complex Analysis, Springer, Berlin, 1977: pp. 22–29. https://doi.org/10.1007/BFb0096821.
  12. P. Goel, S.S. Kumar, Certain Class of Starlike Functions Associated with Modified Sigmoid Function, Bull. Malays. Math. Sci. Soc. 43 (2020), 957–991. https://doi.org/10.1007/s40840-019-00784-y.
  13. A.W. Goodman, Univalent Functions, Mariner Publishing Co. Inc., 1983.
  14. M. Kamali, M. Ca ˘glar, E. Deniz and M. Turabaev, Fekete-Szegö Problem for a New Subclass of Analytic Functions Satisfyingsubordinate Condition Associated with Chebyshev Polynomials, Turk. J. Math. 45 (2021), 1195–1208. https://doi.org/10.3906/mat-2101-20.
  15. F.R. Keogh, E.P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9.
  16. S.S. Kumar, S. Banga, On A Special Type Of Ma-Minda Function, arXiv:2006.02111 [math.CV] (2022). http://arxiv.org/abs/2006.02111.
  17. M. Fekete, G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. Lond. Math. Soc. s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85.
  18. M. Lewin, On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1.
  19. W. Ma, D. Minda, A Unified Treatment of Some Special Classes of Univalent Functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992.
  20. N. Magesh, S. Bulut, Chebyshev Polynomial Coefficient Estimates for a Class of Analytic Bi-Univalent Functions Related to Pseudo-Starlike Functions, Afr. Mat. 29 (2018), 203–209. https://doi.org/10.1007/s13370-017-0535-3.
  21. R. Mendiratta, S. Nagpal, V. Ravichandran, On a Subclass of Strongly Starlike Functions Associated with Exponential Function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365–386. https://doi.org/10.1007/s40840-014-0026-8.
  22. S. Miller, P. Mocabu, Differential Subordination: Theory and Applications, CRC Press, New York, 2000.
  23. E. Muthaiyan, A. Wanas, On Some Coefficient Inqualities Involving Legendre Polynomials in the Class of BiUnivalent Functions, Turk. J. Ineq. 7 (2023), 39–46.
  24. Z. Nehari, Conformal Mappings, McGraw-Hill, New York, 1952.
  25. E. Netanyahu, The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969), 100–112. https://doi.org/10.1007/BF00247676.
  26. A. Raposo, H. Weber, D. Alvarez-Castillo, M. Kirchbach, Romanovski Polynomials in Selected Physics Problems, Centr. Eur. J. Phys. 5 (2007), 253–284. https://doi.org/10.2478/s11534-007-0018-5.
  27. K. Rilely, M. Hobson, S. Bence, Mathematical Methods for Physics and Engineering, Cambridge University Press, Cambridge, 2006.
  28. J. Sokól, J. Stankiewicz, Radius of Convexity of Some Subclasses of Strongly Starlike Functions, Zesz. Nauk. Politech. Rzesz., Mat. 19 (1996), 101–105.
  29. H.M. Srivastava, H.L. Manocha, Ellis Horwood, Chichester and Halstead Press, New York, 1984
  30. H.M. Srivastava, M. Kamalı, A. Urdaletova, A Study of the Fekete-Szegö Functional and Coefficient Estimates for Subclasses of Analytic Functions Satisfying a Certain Subordination Condition and Associated with the Gegenbauer Polynomials, AIMS Math. 7 (2022), 2568–2584. https://doi.org/10.3934/math.2022144.