Bipolar Fuzzy Quasi-Ideals in Γ-Semirings: A Study

Main Article Content

Madhulatha Parvatham, Yella Bhargavi, Aiyared Iampan

Abstract

This paper investigates bipolar fuzzy quasi-ideals in the context of Γ-semirings, offering new insights into their structural properties. Our results reveal that bipolar fuzzy quasi-ideals serve as a generalization of bipolar fuzzy ideals, while bipolar fuzzy bi-ideals extend this framework further. We also establish that in regular Γ-semirings, the two concepts coincide, leading to a unified interpretation. Notably, the intersection of a bipolar fuzzy right ideal and a bipolar fuzzy left ideal forms a bipolar fuzzy quasi-ideal, highlighting key properties that deepen our understanding of ideal structures in Γ-semirings.

Article Details

References

  1. Y. Bhargavi, T. Eswarlal, Fuzzy Γ-Semirings, Int. J. Pure Appl. Math. 98 (2015), 339-349. https://doi.org/10.12732/ijpam.v98i3.6.
  2. Y. Bhargavi, T. Eswarlal, Vague Bi-Ideals and Vague Quasi-Ideals of a Γ-Semiring, Int. J. Sci. Res. 4 (2015), 2694-2699.
  3. Y. Bhargavi, A. Iampan, Vague Interior Ideals of Γ-Semirings, ICIC Express Lett. 18 (2024), 1023-1030. https://doi.org/10.24507/icicel.18.10.1023.
  4. Y. Bhargavi, A. Iampan, B. Nageswararao, Vague Bi-Quasi-Interior Ideals of Γ-Semirings, Int. J. Anal. Appl. 21 (2023), 98. https://doi.org/10.28924/2291-8639-21-2023-98.
  5. Y. Bhargavi, S. Ragamayi, T. Eswarlal, G. Jayalalitha, Vague Bi-Interior Ideals of a Γ-Semiring, Adv. Math.: Sci. J. 9 (2020), 4425-4435. https://doi.org/10.37418/amsj.9.7.13.
  6. P. Madhulatha, Y. Bhargavi, Bipolar Fuzzy Γ-Semirings, AIP Conf. Proc. 2707 (2023), 020006. https://doi.org/10.1063/5.0143364.
  7. P. Madhulatha, Y. Bhargavi, A. Iampan, Bipolar Fuzzy Ideals of Γ-Semirings, Asia Pac. J. Math. 10 (2023), 38. https://doi.org/10.28924/APJM/10-38.
  8. D. Mandal, Fuzzy Ideals and Fuzzy Interior Ideals in Ordered Semirings, Fuzzy Inf. Eng. 6 (2014), 101–114. https://doi.org/10.1016/j.fiae.2014.06.008.
  9. M.M.K. Rao, Γ-Semiring, Southeast Asian Bull. Math. 19 (1995), 49-54.
  10. N. Nobusawa, On a Generalization of the Ring Theory, Osaka J. Math. 1 (1964), 81-89.
  11. M. Parvatham, Y. Bhargavi, A. Iampan, Bipolar Fuzzy Bi-Ideals of Γ-Semirings, Asia Pac. J. Math. 11 (2024), 69. https://doi.org/10.28924/APJM/11-69.
  12. H.S. Vandiver, Note on a Simple Type of Algebra in Which the Cancellation Law of Addition Does Not Hold, Bull. Amer. Math. Soc. 40 (1934), 916-920.
  13. K.V. Kumar, B. Jyothi, P.N. Swamy, T. Nagaiah, G. Omprakasham, Characterization on Bipolar Fuzzy Quasi Ideals and Bipolar N-Subgroups of near Rings, AIP Conf. Proc. 2246 (2020), 020053. https://doi.org/10.1063/5.0014444.
  14. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  15. W.R. Zhang, Bipolar Fuzzy Sets and Relations: A Computational Framework for Cognitive Modeling and Multiagent Decision Analysis, in: Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, IEEE, San Antonio, TX, USA, 1994: pp. 305–309. https://doi.org/10.1109/IJCF.1994.375115.