Decision-Making of a New Type of Stochastic Space and Its Associated Operator Ideal
Main Article Content
Abstract
We develop and examine the pre-modular space of null variable exponent-weighted backward generalized difference gai sequences of fuzzy functions in this paper. These sequences of fuzzy functions are important contributions to the concept of modular spaces because they have exponent weighting. Using extended s−fuzzy functions as well as this sequence space of fuzzy functions, it has been possible to accomplish an idealization of the mappings. We have presented some topological and geometric properties of this new space, as well as the ideal mappings that correspond to them.
Article Details
References
- A. Pietsch, Einigie neu Klassen von Kompakten Linearen Abbildungen, Rev. Roum. Math. Pures Appl. 8 (1963), 427–447.
- A. Pietsch, s-Numbers of Operators in Banach Spaces, Studia Math. 51 (1974), 201–223. https://doi.org/10.4064/sm-51-3-201-223.
- A. Pietsch, Operator Ideals, North-Holland Publishing Company, Amsterdam, (1980).
- A. Pietsch, Small Ideals of Operators, Studia Math. 51 (1974), 265-267.
- G. Constantin, Operators of ces − p Type, Rend. Accad. Naz. Lincei. 52 (1972), 875–878.
- B.M. Makarov, N. Faried, Some Properties of Operator Ideals Constructed by s Numbers, in: Theory of Operators in Functional Spaces, Academy of Science, Siberian Section, Novosibirsk, pp. 206–211, (1977).
- N. Tita, On Stolz Mappings, Math. Japon. 26 (1981), 495-496.
- N. Tita, Ideale de Operatori Generate de s Numere, Editura University Tranilvania, Brasov, (1998).
- A. Maji, P.D. Srivastava, Some Results of Operator Ideals on s-Type |A, p| Operators, Tamkang J. Math. 45 (2014), 119–136. https://doi.org/10.5556/j.tkjm.45.2014.1297.
- E.E. Kara, M. ˙Ilkhan, On a New Class of s-Type Operators, Konuralp J. Math. 3 (2015), 1-11.
- T. Yaying, B. Hazarika, M. Mursaleen, On Sequence Space Derived by the Domain of q-Cesàro Matrix in `p Space and the Associated Operator Ideal, J. Math. Anal. Appl. 493 (2021), 124453. https://doi.org/10.1016/j.jmaa.2020.124453.
- N. Faried, A.A. Bakery, Small Operator Ideals Formed by s Numbers on Generalized Cesáro and Orlicz Sequence Spaces, J. Ineq. Appl. 2018 (2018), 357. https://doi.org/10.1186/s13660-018-1945-y.
- L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
- K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-Theoretic Fixed Point Results in Fuzzy b-Metric Spaces with an Application, J. Math. 2021 (2021), 6663707. https://doi.org/10.1155/2021/6663707.
- S.U. Rehman, H. Aydi, Rational Fuzzy Cone Contractions on Fuzzy Cone Metric Spaces with an Application to Fredholm Integral Equations, J. Funct. Spaces 2021 (2021), 5527864. https://doi.org/10.1155/2021/5527864.
- K. Javed, H. Aydi, F. Uddin, M. Arshad, On Orthogonal Partial b-Metric Spaces with an Application, J. Math. 2021 (2021), 6692063. https://doi.org/10.1155/2021/6692063.
- Humaira, H.A. Hammad, M. Sarwar, M. De La Sen, Existence Theorem for a Unique Solution to a Coupled System of Impulsive Fractional Differential Equations in Complex-Valued Fuzzy Metric Spaces, Adv. Diff. Equ. 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0.
- B.-R. Badshah-e-Rome, M. Sarwar, R. Rodríguez-López, Fixed Point Results via α-Admissibility in Extended Fuzzy Rectangular b-Metric Spaces with Applications to Integral Equations, Mathematics 9 (2021), 2009. https://doi.org/10.3390/math9162009.
- S. Nanda, On Sequences of Fuzzy Numbers, Fuzzy Sets Syst. 33 (1989), 123–126. https://doi.org/10.1016/0165-0114(89)90222-4.
- F. Nuray, E. Sava¸s, Statistical Convergence of Sequences of Fuzzy Numbers, Math. Slovaca 45 (1995), 269–273. http://dml.cz/dmlcz/129143.
- M. Matloka, Sequences of Fuzzy Numbers, Busefal 28 (1986), 28–37.
- H. Altınok, R. Çolak, M. Et, λ-Difference Sequence Spaces of Fuzzy Numbers, Fuzzy Sets Syst. 160 (2009), 3128–3139. https://doi.org/10.1016/j.fss.2009.06.002.
- R. Çolak, H. Altınok, M. Et, Generalized Difference Sequences of Fuzzy Numbers, Chaos Solitons Fract. 40 (2009), 1106–1117. https://doi.org/10.1016/j.chaos.2007.08.065.
- B. Hazarika, E. Savas, Some I-Convergent Lambda-Summable Difference Sequence Spaces of Fuzzy Real Numbers Defined by a Sequence of Orlicz Functions, Math. Comp. Model. 54 (2011), 2986–2998. https://doi.org/10.1016/j.mcm.2011.07.026.
- B.C. Tripathy, A. Baruah, NEW TYPE OF DIFFERENCE SEQUENCE SPACES OF FUZZY REAL NUMBERS, Mathematical Modelling and Analysis 14 (2009), 391–397. https://doi.org/10.3846/1392-6292.2009.14.391-397.
- N. Subramanian, U. Misra, The Generalised Double Difference of Gai Sequence Spaces, Fasc. Math. 43 (2010), 155-164.
- N. Subramanian, U. Misra, The Generalized Semi-Normed Difference of Double Gai Sequence Spaces Defined by a Modulus Function, Stud. Univ. Babe¸s-Bolyai Math. 56 (2011), 63-73.
- N. Subramanian, A. Esi, U.K. Misra, M.S. Panda, The Generalized Difference Gai Sequences of Fuzzy Numbers Defined by Orlicz Functions, Bol. Soc. Paran. Mat. 30 (2011), 9–18. https://doi.org/10.5269/bspm.v30i2.13450.
- A.A. Bakery, E.A.E. Mohamed, On the Nonlinearity of Extended s -Type Weighted Nakano Sequence Spaces of Fuzzy Functions with Some Applications, J. Funct. Spaces 2022 (2022), 2746942. https://doi.org/10.1155/2022/2746942.
- V. Kumar, A. Sharma, K. Kumar, N. Singh, On Limit Points and Cluster Points of Sequences of Fuzzy Numbers, Int. Math. Forum 2 (2007), 2815-2822.
- B.C. Tripathy, A. Esi, B.K. Tripathy, On a New Type of Generalized Difference Cesáro Sequence Spaces, Soochow J. Math. 31 (2005), 333-340.
- M. Et, R. Çolak, On Some Generalized Difference Spaces, Soochow J. Math. 21 (1995), 377-386.
- B.C. Tripathy, A. Esi, A New Type of Difference Sequence Spaces, Int. J. Food Sci. Techn. 1 (2006), 11-14.
- H. Kizmaz, On Certain Sequence Spaces, Canad. Math. Bull. 24 (1981), 169–176. https://doi.org/10.4153/CMB-1981-027-5.
- A.A. Bakery, A.R.A. Elmatty, A Note on Nakano Generalized Difference Sequence Space, Adv. Diff. Equ. 2020 (2020), 620. https://doi.org/10.1186/s13662-020-03082-1.
- A. Pietsch, Eigenvalues and s-Numbers, Cambridge University Press, (1986).
- B. Altay, F. Ba¸sar, Generalization of the Sequence Space `(p) Derived by Weighted Mean, J. Math. Anal. Appl. 330 (2007), 174–185. https://doi.org/10.1016/j.jmaa.2006.07.050.
- H. Nakano, Modulared Sequence Spaces, Proc. Japan Acad. Ser. A, Math. Sci. 27 (1951), 508-512. https://doi.org/10.3792/pja/1195571225.
- B.E. Rhoades, Operators of A − p Type, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 59 (1975), 238-241.