Control and Function Projective Synchronization of 3D Chaotic System
Main Article Content
Abstract
In this paper, we study a linear feedback control to dampen the chaotic behavior of a 3D dynamic system. Based on the Routh-Hurwitz criterion, the conditions are determined to achieve control. Furthermore, function projective synchronization (FPS) between two identical 3D chaotic systems is demonstrated. The proof of asymptotic stability of solutions for the error dynamical system depends on the negative eigenvalues of the system. Additionally, numerical simulations are utilized to demonstrate the impact and effectiveness of the proposed methods.
Article Details
References
- X. Xu, Generalized Function Projective Synchronization of Chaotic Systems for Secure Communication, EURASIP J. Adv. Signal Process. 2011 (2011), 14. https://doi.org/10.1186/1687-6180-2011-14.
- H.N. Agiza, On the Analysis of Stability, Bifurcation, Chaos and Chaos Control of Kopel Map, Chaos Solitons Fract. 10 (1999), 1909–1916. https://doi.org/10.1016/S0960-0779(98)00210-0.
- G. Chen, X. Dong, On Feedback Control of Chaotic Nonlinear Dynamic Systems, Int. J. Bifurcation Chaos 02 (1992), 407–411. https://doi.org/10.1142/S0218127492000392.
- A. Hajipour, H. Tavakoli, On Adaptive Chaos Control and Synchronization of a Novel Fractional-Order Financial System, in: 6th International Conference on Control, Instrumentation and Automation (ICCIA), IEEE, Sanandaj, Iran, 2019: pp. 1–7. https://doi.org/10.1109/ICCIA49288.2019.9030921.
- A. Hegazi, H.N. Agiza, M.M. El-Dessoky, Controlling Chaotic Behaviour for Spin Generator and Rossler Dynamical Systems with Feedback Control, Chaos Solitons Fract. 12 (2001), 631–658. https://doi.org/10.1016/S0960-0779(99)00192-7.
- C.C. Hwang, H. Jin-Yuan, L. Rong-Syh, A Linear Continuous Feedback Control of Chua’s Circuit, Chaos Solitons Fract. 8 (1997), 1507–1515. https://doi.org/10.1016/S0960-0779(96)00150-6.
- A. Khan, T. Khan, H. Chaudhary, Chaos Controllability in Chemical Reactor System via Active Controlled Hybrid Projective Synchronization Method, AIP Conf. Proc. 2435 (2022), 020054. https://doi.org/10.1063/5.0084689.
- A. Singh, S. Gakkhar, Controlling Chaos in a Food Chain Model, Math. Comp. Simul. 115 (2015), 24–36. https://doi.org/10.1016/j.matcom.2015.04.001.
- M.M. El-Dessoky, E. Alzahrani, Z.A. Abdulmannan, Control and Adaptive Modified Function Projective Synchronization of a New Chaotic System, J. Math. Comp. Sci. 34 (2024), 394–403. https://doi.org/10.22436/jmcs.034.04.06.
- L.M. Pecora, T.L. Carroll, Synchronization in Chaotic Systems, Phys. Rev. Lett. 64 (1990), 821–824. https://doi.org/10.1103/PhysRevLett.64.821.
- M.M. El-Dessoky, Synchronization and Anti-Synchronization of a Hyperchaotic Chen System, Chaos Solitons Fract. 39 (2009), 1790–1797. https://doi.org/10.1016/j.chaos.2007.06.053.
- M.M. El-Dessoky, Anti-Synchronization of Four Scroll Attractor with Fully Unknown Parameters, Nonlinear Anal.: Real World Appl. 11 (2010), 778–783. https://doi.org/10.1016/j.nonrwa.2009.01.048.
- M.M. El-Dessoky, H.N. Agiza, Global Stabilization of Some Chaotic Dynamical Systems, Chaos Solitons Fract. 42 (2009), 1584–1598. https://doi.org/10.1016/j.chaos.2009.03.028.
- M.M. El-Dessoky, E.O. Alzahrany, N.A. Almohammadi, Function Projective Synchronization for Four Scroll Attractor by Nonlinear Control, Appl. Math. Sci. 11 (2017), 1247–1259. https://doi.org/10.12988/ams.2017.7259.
- G.H. Li, Modified Projective Synchronization of Chaotic System, Chaos Solitons Fract. 32 (2007), 1786–1790. https://doi.org/10.1016/j.chaos.2005.12.009.
- J.H. Park, Adaptive Modified Projective Synchronization of a Unified Chaotic System with an Uncertain Parameter, Chaos Solitons Fract. 34 (2007), 1552–1559. https://doi.org/10.1016/j.chaos.2006.04.047.
- N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems, Phys. Rev. E 51 (1995), 980–994. https://doi.org/10.1103/PhysRevE.51.980.
- L. Runzi, W. Zhengmin, Adaptive Function Projective Synchronization of Unified Chaotic Systems with Uncertain Parameters, Chaos Solitons Fract. 42 (2009), 1266–1272. https://doi.org/10.1016/j.chaos.2009.03.076.
- Y. Tang, J. Fang, General Methods for Modified Projective Synchronization of Hyperchaotic Systems with Known or Unknown Parameters, Physics Lett. A 372 (2008), 1816–1826. https://doi.org/10.1016/j.physleta.2007.10.043.
- B. Zhen, Y. Zhang, Generalized Function Projective Synchronization of Two Different Chaotic Systems with Uncertain Parameters, Appl. Sci. 13 (2023), 8135. https://doi.org/10.3390/app13148135.
- T.L. Carroll, L.M. Pecora, Synchronizing Chaotic Circuits, IEEE Trans. Circ. Syst. 38 (1991), 453–456.
- E.M. Elabbasy, M.M. El-Dessoky, Synchronization and Adaptive Synchronization of Hyperchaotic Lu Dynamical System, Trends Appl. Sci. Res. 3 (2008), 129–141.
- B. Idowu, K. Oyeleke, C. Ogabi, O. Olusola, Projective Synchronization of a 3D Chaotic System with Quadratic and Quartic Nonlinearities, J. Res. Rev. Sci. 7 (2020), 1–8. https://doi.org/10.36108/jrrslasu/0202.70.0110.
- M.M. El-Dessoky, E. Alzahrani, Z.A. Abdulmannan, Generalized Function Projective Synchronization of Identical and Nonidentical Chaotic Systems, J. Math. Comp. Sci. 35 (2024), 109–119. https://doi.org/10.22436/jmcs.035.01.08.
- Y. Chen, X. Li, Function Projective Synchronization Between Two Identical Chaotic Systems, Int. J. Mod. Phys. C 18 (2007), 883–888. https://doi.org/10.1142/S0129183107010607.
- M.M. El-Dessoky, E.O. Alzahrani, N.A. Almohammadi, Control and Adaptive Modified Function Projective Synchronization of Liu Chaotic Dynamical System, J. Appl. Anal. Comp. 9 (2019), 601–614. https://doi.org/10.11948/2156-907X.20180119.
- S. Zheng, G. Dong, Q. Bi, Adaptive Modified Function Projective Synchronization of Hyperchaotic Systems with Unknown Parameters, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 3547–3556. https://doi.org/10.1016/j.cnsns.2009.12.010.
- H. Zhu, Adaptive Modified Function Projective Synchronization of a New Chaotic Complex System with Uncertain Parameters, in: 3rd International Conference on Computer Research and Development, IEEE, Shanghai, China, 2011: pp. 451–455. https://doi.org/10.1109/ICCRD.2011.5763944.
- Z. Wei, Delayed Feedback on the 3-D Chaotic System Only with Two Stable Node-Foci, Comp. Math. Appl. 63 (2012), 728–738. https://doi.org/10.1016/j.camwa.2011.11.037.
- Q. Yang, Z. Wei, G. Chen, An Unusual 3D Autonomous Quadratic Chaotic System With Two Stable Node-Foci, Int. J. Bifurcation Chaos 20 (2010), 1061–1083. https://doi.org/10.1142/S0218127410026320.