Difference Cesáro Function Space on Rooted Tree Defined by Musielak-Orlicz Function

Main Article Content

Anas Faiz Alsaedy, Salah H. Alshabhi, Vivek Kumar, Mohammed N. Alshehri, Sunil K. Sharma, Mustafa M. Mohammed, Runda A. A. Bashir, Nidal E. Taha, Awad A. Bakery

Abstract

This paper aims to investigate the algebraic and topological properties of a newly constructed difference function space on a rooted tree defined by Musielak-Orlicz function.

Article Details

References

  1. F. Basar, B. Altay, On the Space of Sequences of p-Bounded Variation and Related Matrix Mappings, Ukr. Math. J. 55 (2003), 136–147. https://doi.org/10.1023/A:1025080820961.
  2. M. Ba¸sarir, M. Kayikçi, On the Generalized B m-Riesz Difference Sequence Space and β-Property, J. Inequal. Appl. 2009 (2009), 385029. https://doi.org/10.1155/2009/385029.
  3. H. Dutta, M. Phil, On Some Difference Sequence Spaces, Pac. J. Sci. Technol. 10 (2009), 243-247.
  4. H. Dutta, Some Statistically Convergent Difference Sequence Spaces Defined Over Real 2-Normed Linear Space, Appl. Sci. 12 (2010), 37-47. https://eudml.org/doc/225854.
  5. M. Et, R. Çolak, On Some Genelalized Difference Sequence Spaces, Soochow J. Math. 21 (1995), 377-356.
  6. M. Et, M. Ba¸sarir, On Some New Genelalized Difference Sequence Spaces, Period. Math. Hung. 35 (1997), 169–175. https://doi.org/10.1023/A:1004597132128.
  7. B.D. Hassard, D.H. Hussein, On Cesaro Function Spaces, Tamgang. J. Math. 4 (1973), 19–25.
  8. H. Kizmaz, On Certain Sequence Spaces, Canad. Math. Bull. 24 (1981), 169–176. https://doi.org/10.4153/CMB-1981-027-5.
  9. D. Kubiak, A Note on Cesàro–Orlicz Sequence Spaces, J. Math. Anal. Appl. 349 (2009), 291–296. https://doi.org/10.1016/j.jmaa.2008.08.022.
  10. P.Y. Lee, Cesàro Sequence Spaces, Math. Chron. 13 (1984), 29-45.
  11. J. Lindenstrauss, L. Tzafriri, On Orlicz Sequence Spaces, Israel J. Math. 10 (1971), 379–390. https://doi.org/10.1007/BF02771656.
  12. S.K. Lim, P.Y. Lee, An Orlicz Extension of Cesaro Sequence Spaces, Comment. Math. 28 (1928), 117-128. https://eudml.org/doc/291736.
  13. L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics, Polish Academy of Science, 1989.
  14. L. Maligranda, N. Petrot, S. Suantai, On the James Constant and B-Convexity of Cesàro and Cesàro–Orlicz Sequence Spaces, J. Math. Anal. Appl. 326 (2007), 312–331. https://doi.org/10.1016/j.jmaa.2006.02.085.
  15. J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin, Heidelberg, 1983. https://doi.org/10.1007/BFb0072210.
  16. M. Mursaleen, S.K. Sharma, S.A. Mohiuddine, A. Kılıçman, New Difference Sequence Spaces Defined by MusielakOrlicz Function, Abstr. Appl. Anal. 2014 (2014), 691632. https://doi.org/10.1155/2014/691632.
  17. M. Mursaleen, A. Alotaibi, S.K. Sharma, Some New Lacunary Strong Convergent Vector-Valued Sequence Spaces, Abstr. Appl. Anal. 2014 (2014), 858504. https://doi.org/10.1155/2014/858504.
  18. M. Mursaleen, S.K. Sharma, Entire sequence spaces defined on locally convex Hausdorff topological space, Iran. J. Sci. Technol. 38 (2014), 105–109.
  19. P. Muthukumar, S. Ponnusamy, Discrete Analogue of Generalized Hardy Spaces and Multiplication Operators on Homogenous Trees, Anal. Math. Phys. 7 (2017), 267–283. https://doi.org/10.1007/s13324-016-0141-9.
  20. P. Muthukumar, S. Ponnusamy, Composition Operators on the Discrete Analogue of Generalized Hardy Space on Homogenous Trees, Bull. Malays. Math. Sci. Soc. 40 (2017), 1801–1815. https://doi.org/10.1007/s40840-016-0419-y.
  21. N. Petrot, S. Suantai, Some Geometric Properties in Cesáro-Orlicz Sequence Spaces, ScienceAsia 31 (2005), 173-177.
  22. K. Raj, C. Sharma, S. Pandoh, Multiplication Operators on Cesàro-Orlicz Sequence Spaces, Fasc. Math. 57 (2016), 137–145. https://doi.org/10.1515/fascmath-2016-0021.
  23. A.K. Sharma, V. Kumar, Discrete Cesaro Operator between Weighted Banach Spaces on Homogenous Trees, Adv. Oper. Theory 5 (2020), 1667–1683. https://doi.org/10.1007/s43036-020-00078-2.
  24. J.S. Shiue, On the Cesàro Sequence Spaces, Tamkang J. Math. 1 (1970), 19-25.
  25. J.S. Shiue, A Note on Cesaro Function Space, Tamkang J. Math. 1 (1970), 91-95.
  26. W. Sanhan, S. Suantai, On k-Nearly Uniform Convex Property in Generalized Cesàro Sequence Spaces, Int. J. Math. Math. Sci. 2003 (2003), 3599–3607. https://doi.org/10.1155/S0161171203301267.