Application of Chebyshev Polynomial-Exponential Method and Tamimi-Ansari Method in Dengue Transmission Dynamics: A Comparative Study

Main Article Content

K.M. Dharmalingam, N. Jeeva, Nazek Alessa

Abstract

Dengue virus transmitted by mosquitoes, poses a significant global health threat, affecting millions of people annually. In this paper, we explore the dynamics of a dengue virus transmission model, structured as an epidemiological mathematical framework. The model divides the total population into seven compartments: susceptible humans S(t), exposed humans E(t), infected humans I(t), recovered humans R(t), susceptible mosquitoes M(t), exposed mosquitoes ME(t), and infected mosquitoes MI(t). We employed the Chebyshev polynomial-exponential method (CPEM) and Tamimi-Ansari method (TAM) to conduct an in-depth semi-analytical examination of this model. The numerical simulation using MATLAB® ode45 solver was used to compare the results with CPEM and TAM, validating the accuracy and effectiveness of the obtained solutions. The comparison shows no significant differences between the CPEM with numerical results, which leads to a interesting findings. Additionally, by varying the sensitive parameters, we analyzed the behavior of the different compartments within the model. This investigation provides valuable insights into the responses of dengue transmission under various conditions, demonstrating the potential of novel semi-analytical methods for studying epidemiological models of infectious diseases, which is highly beneficial for researchers in the field.

Article Details

References

  1. P. Ganeshkumar, M.V. Murhekar, V. Poornima, V. Saravanakumar, K. Sukumaran, A. Anandaselvasankar, D. John, S.M. Mehendale, Dengue Infection in India: A Systematic Review and Meta-Analysis, PLoS Negl. Trop. Dis. 12 (2018), e0006618. https://doi.org/10.1371/journal.pntd.0006618.
  2. World Health Organization, Dengue and Severe Dengue, (2023). https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
  3. D.J. Gubler, Dengue and Dengue Hemorrhagic Fever, Clin. Microbiol. Rev. 11 (1998), 480–496. https://doi.org/10.1128/CMR.11.3.480.
  4. N. Gupta, S. Srivastava, A. Jain, U.C. Chaturvedi, Dengue in India, Indian J. Med. Res. 136 (2012), 373-390.
  5. A.K. Srivastav, M. Ghosh, Assessing the Impact of Treatment on the Dynamics of Dengue Fever: A Case Study of India, Appl. Math. Comput. 362 (2019), 124533. https://doi.org/10.1016/j.amc.2019.06.047.
  6. H.S. Rodrigues, M.T.T. Monteiro, D.F.M. Torres, Sensitivity Analysis in a Dengue Epidemiological Model, Conf. Pap. Math. 2013 (2013), 721406. https://doi.org/10.1155/2013/721406.
  7. S. Side, Y.M. Rangkuti, D.G. Pane, M.S. Sinaga, Stability Analysis Susceptible, Exposed, Infected, Recovered (SEIR) Model for Spread Model for Spread of Dengue Fever in Medan, J. Phys. Conf. Ser. 954 (2018), 012018. https://doi.org/10.1088/1742-6596/954/1/012018.
  8. S.M. Garba, A.B. Gumel, M.R. Abu Bakar, Backward Bifurcations in Dengue Transmission Dynamics, Math. Biosci. 215 (2008), 11–25. https://doi.org/10.1016/j.mbs.2008.05.002.
  9. M.R. Hasan, A. Hobiny, A. Alshehri, Analysis of Vector-Host SEIR-SEI Dengue Epidemiological Model, Int. J. Anal. Appl. 20 (2022), 57. https://doi.org/10.28924/2291-8639-20-2022-57.
  10. Z. Xu, H. Zhang, D. Yang, D. Wei, J. Demongeot, Q. Zeng, The Mathematical Modeling of the Host–Virus Interaction in Dengue Virus Infection: A Quantitative Study, Viruses 16 (2024), 216. https://doi.org/10.3390/v16020216.
  11. P. Muthu, B. Modak, Within-Host Models of Dengue Virus Transmission with Immune Response, Comput. Math. Biophys. 11 (2023), 20220150. https://doi.org/10.1515/cmb-2022-0150.
  12. Harshit, P. Harjule, Mathematical Modelling and Analysis of Dengue Transmission Dynamics, Procedia Comput. Sci. 235 (2024), 539–548. https://doi.org/10.1016/j.procs.2024.04.053.
  13. N. Jeeva, K.M. Dharmalingam, N. Ali, M.Z. Sayed-Ahmed, R.M. Radwan, et al. Epidemiology Simulation: Numerical Techniques for Analyzing Type 2 Diabetes Model and Its Prevention Measures, Commun. Math. Biol. Neurosci. 2024 (2024), 117. https://doi.org/10.28919/cmbn/8741.
  14. A.A. Adeniji, O.A. Mogbojuri, M.C. Kekana, S.E. Fadugba, Numerical Solution of Rotavirus Model Using RungeKutta-Fehlberg Method, Differential Transform Method and Laplace Adomian Decomposition Method, Alex. Eng. J. 82 (2023), 323–329. https://doi.org/10.1016/j.aej.2023.10.001.
  15. N. Jeeva, K.M. Dharmalingam, Sensitivity Analysis and Semi-Analytical Solution for Analyzing the Dynamics of Coffee Berry Disease, Comput. Res. Model. 16 (2024), 731–753. https://doi.org/10.20537/2076-7633-2024-16-3-731-753.
  16. N. Jeeva, K.M. Dharmalingam, Mathematical Analysis of New SEIQR Model via Laplace Adomian Decomposition Method, Indian J. Nat. Sci. 15 (2024), 72148-72157.
  17. M. Thongmoon, S. Pusjuso, The Numerical Solutions of Differential Transform Method and the Laplace Transform Method for a System of Differential Equations, Nonlinear Anal. Hybrid Syst. 4 (2010), 425–431. https://doi.org/10.1016/j.nahs.2009.10.006.
  18. N. Jeeva, K.M. Dharmalingam, Numerical Analysis of Skin Cancer Model Induced by Ultraviolet Radiation, Int. J. Biomath. (2024), 2450137. https://doi.org/10.1142/S1793524524501377.
  19. K.M. Dharmalingam, N. Jeeva, N. Ali, R.K. Al-Hamido, S.E. Fadugba, et al. Mathematical Analysis of Zika Virus Transmission: Exploring Semi-Analytical Solutions and Effective Controls, Commun. Math. Biol. Neurosci. 2024 (2024), 112. https://doi.org/10.28919/cmbn/8719.
  20. S.E. Fadugba, M.C. Kekana, N. Jeeva, I. Ibrahim, Development and Implementation of Innovative Higher Order Inverse Polynomial Method for Tackling Physical Models in Epidemiology, J. Math. Comput. Sci. 36 (2025), 444-454. https://doi.org/10.22436/jmcs.036.04.07.
  21. N. Jeeva, K.M. Dharmalingam, S.E. Fadugba, M.C. Kekana, A.A. Adeniji, Implementation of Laplace Adomian Decomposition and Differential Transform Methods for SARS-CoV-2 Model, J. Appl. Math. Inf. 42 (2024), 945-968. https://doi.org/10.14317/jami.2024.945.
  22. N. Jeeva, K.M. Dharmalingam, Analytical Expression of HIV Infection Model Using Taylor Series Method (TSM), Int. J. Creat. Res. Thoughts, 11 (2023), 859–867.
  23. N. Jeeva, K.M. Dharmalingam, Solving Non-Homogeneous Lane-Embed Type Equation Using Taylor Series Method, Commun. Nonlinear Anal. 1 (2024), 1–5.
  24. S.M. Abed, M.A. Al-Jawary, Reliable Iterative Methods for Mathematical Biology Model, Commun. Math. Biol. Neurosci. 2020 (2020), 45. https://doi.org/10.28919/cmbn/4767.
  25. S.M. Abed, M.A. Al-Jawary, Reliable Iterative Methods for Mathematical Model of COVID-19 Based on Data in Anhui, China, Commun. Math. Biol. Neurosci. 2020 (2020), 50. https://doi.org/10.28919/cmbn/4802.
  26. M.A. Al-Jawary, M.I. Adwan, G.H. Radhi, Three Iterative Methods for Solving Second Order Nonlinear ODEs Arising in Physics, J. King Saud Univ. Sci. 32 (2020), 312–323. https://doi.org/10.1016/j.jksus.2018.05.006.
  27. H. Temimi, A.R. Ansari, A Semi-Analytical Iterative Technique for Solving Nonlinear Problems, Comput. Math. Appl. 61 (2011), 203–210. https://doi.org/10.1016/j.camwa.2010.10.042.
  28. H. Rezazadeh, W. Adel, A. Fazolahtabar, R.A. Talarposhti, Analytical Approach Based on Tamimi-Ansari Method for Solving Nonlinear Equations with Applications, Comput. Sci. Eng. 1 (2021), 99-108. https://doi.org/10.22124/cse.2021.19367.1005.
  29. S.E. Fadugba, A.F. Olanrewaju, D.K. Okyere, O.A. Ajayi, M.C. Kekana, O. Faweya, B.T. Babalola, H.O. Emeka, Numerical Implementation of Higher Order Explicit Method for Physical Models via a Hybrid Interpolating Function, Asia Pac. J. Math. 10 (2023), 44. https://doi.org/10.28924/apjm/10-44
  30. R.B. Ogunrinde, K.S. Olayemi, I.O. Isah, A.S. Salawu, A Numerical Solver for First Order Initial Value Problems of Ordinary Differential Equation via the Combination of Chebyshev Polynomial and Exponential Function, J. Phys. Sci. 1 (2019), 1–16.