Mathematical Modeling and Optimal Control of an HIV/AIDS Transmission Model

Main Article Content

Ouedraogo Boukary, Zorom Malicki, Gouba Elisée

Abstract

In this article, we present a mathematical model for the transmission of HIV with the compartment of individuals in remission and vertical transmission describing the dynamics of the spread of the HIV/AIDS epidemic in a community. In the mathematical analysis of the model, we compute the basic reproduction number R0 and study the existence and stability of the disease-free equilibrium point. We also formulate an appropriate optimal control problem and study the conditions necessary for disease control to determine the role of preventive measures and treatment in reducing the spread of HIV/AIDS. Indeed, we study the impact of these control variables taken separately and combined. So we find that treatment is more cost-effective in reducing the spread of HIV than preventive measures. Finally, the numerical results conform to the theoretical analysis.

Article Details

References

  1. ONUSIDA, Fiche d’Information-Dernières Statistiques sur l’Épidémie du VIH-SIDA, 2022. https://www.unaids.org/fr/resources/fact-sheet.
  2. T.T. Yusuf, F. Benyah, Optimal Strategy for Controlling the Spread of HIV/AIDS Disease: A Case Study of South Africa, J. Biol. Dyn. 6 (2012), 475–494. https://doi.org/10.1080/17513758.2011.628700.
  3. C.P. Bhunu, W. Garira, G. Magombedze, Mathematical Analysis of a Two Strain HIV/AIDS Model with Antiretroviral Treatment, Acta Biotheor. 57 (2009), 361–381. https://doi.org/10.1007/s10441-009-9080-2.
  4. C.P. Bhunu, W. Garira, Z. Mukandavire, Modeling HIV/AIDS and Tuberculosis Coinfection, Bull. Math. Biol. 71 (2009), 1745–1780. https://doi.org/10.1007/s11538-009-9423-9.
  5. C.P. Bhunu, S. Mushayabasa, H. Kojouharov, J.M. Tchuenche, Mathematical Analysis of an HIV/AIDS Model: Impact of Educational Programs and Abstinence in Sub-Saharan Africa, J. Math. Model. Algorithms 10 (2011), 31–55. https://doi.org/10.1007/s10852-010-9134-0.
  6. L. Cai, X. Li, M. Ghosh, B. Guo, Stability Analysis of an HIV/AIDS Epidemic Model with Treatment, J. Comput. Appl. Math. 229 (2009), 313–323. https://doi.org/10.1016/j.cam.2008.10.067.
  7. R.M. Granich, C.F. Gilks, C. Dye, K.M. De Cock, B.G. Williams, Universal Voluntary HIV Testing with Immediate Antiretroviral Therapy as a Strategy for Elimination of HIV Transmission: A Mathematical Model, The Lancet 373 (2009), 48–57. https://doi.org/10.1016/S0140-6736(08)61697-9.
  8. D. Greenhalgh, A Mathematical Treatment of AIDS and Condom Use, Math. Med. Biol. 18 (2001), 225–262. https://doi.org/10.1093/imammb/18.3.225.
  9. D. Baleanu, H. Mohammadi, S. Rezapour, Analysis of the Model of HIV-1 Infection of CD4 + T-Cell with a New Approach of Fractional Derivative, Adv. Differ. Equ. 2020 (2020), 71. https://doi.org/10.1186/s13662-020-02544-w.
  10. Modeling the Effect of Information Campaigns on the HIV Epidemic in Uganda, Math. Biosci. Eng. 5 (2008), 757–770. https://doi.org/10.3934/mbe.2008.5.757.
  11. J. Musgrave, J. Watmough, Examination of a Simple Model of Condom Usage and Individual Withdrawal for the HIV Epidemic, Math. Biosci. Eng. 6 (2009), 363–376. https://doi.org/10.3934/mbe.2009.6.363.
  12. K.O. Okosun, O.D. Makinde, I. Takaidza, Impact of Optimal Control on the Treatment of HIV/AIDS and Screening of Unaware Infectives, Appl. Math. Model. 37 (2013), 3802–3820. https://doi.org/10.1016/j.apm.2012.08.004.
  13. E.D. Gurmu, B.K. Bole, P.R. Koya, Mathematical Modelling of HIV/AIDS Transmission Dynamics with Drug Resistance Compartment, Amer. J. Appl. Math. 8 (2020), 34–45. https://doi.org/10.11648/j.ajam.20200801.16.
  14. J. Karrakchou, M. Rachik, S. Gourari, Optimal Control and Infectiology: Application to an HIV/AIDS Model, Appl. Math. Comput. 177 (2006), 807–818. https://doi.org/10.1016/j.amc.2005.11.092.
  15. B.M. Adams, H.T. Banks, H.D. Kwon, H.T. Tran, Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches, Math. Biosci. Eng. 1 (2004), 223–241. https://doi.org/10.3934/mbe.2004.1.223.
  16. G. Zaman, Y. Han Kang, I.H. Jung, Stability Analysis and Optimal Vaccination of an SIR Epidemic Model, Biosystems 93 (2008), 240–249. https://doi.org/10.1016/j.biosystems.2008.05.004.
  17. J.A.M. Felippe De Souza, M.A.L. Caetano, T. Yoneyama, Optimal Control Theory Applied to the Anti-Viral Treatment of AIDS, in: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), IEEE, Sydney, Australia, 2000: pp. 4839–4844. https://doi.org/10.1109/CDC.2001.914696.
  18. H.R. Joshi, Optimal Control of an HIV Immunology Model, Optim. Control Appl. Methods 23 (2002), 199–213. https://doi.org/10.1002/oca.710.
  19. O.A. Adepoju, S. Olaniyi, Stability and Optimal Control of a Disease Model with Vertical Transmission and Saturated Incidence, Sci. Afr. 12 (2021), e00800. https://doi.org/10.1016/j.sciaf.2021.e00800.
  20. K.O. Okosun, R. Ouifki, N. Marcus, Optimal Control Analysis of a Malaria Disease Transmission Model That Includes Treatment and Vaccination with Waning Immunity, Biosystems 106 (2011), 136–145. https://doi.org/10.1016/j.biosystems.2011.07.006.
  21. K.O. Okosun, O.D. Makinde, I. Takaidza, Impact of Optimal Control on the Treatment of HIV/AIDS and Screening of Unaware Infectives, Appl. Math. Model. 37 (2013), 3802–3820. https://doi.org/10.1016/j.apm.2012.08.004.
  22. C.J. Silva, D.F.M. Torres, A SICA Compartmental Model in Epidemiology with Application to HIV/AIDS in Cape Verde, Ecol. Complex. 30 (2017), 70–75. https://doi.org/10.1016/j.ecocom.2016.12.001.
  23. D. Aldila, R.R. Aprilliani, M. Malik, Understanding HIV Spread with Vertical Transmission through Mathematical Model, AIP Conf. Proc. 2014 (2018), 020142. https://doi.org/10.1063/1.5054546.
  24. United Nations General Assembly, Political Declaration on HIV and AIDS: Ending Inequalities and Getting on Track to End Aids by 2030, 2021. https://www.unaids.org/sites/default/files/media_asset/2021_political-declaration-on-hiv-and-aids_en.pdf.
  25. G. Sallet, Nombre de Reproduction de Base: R0, INRIA et IRD, (2010).
  26. Z. Shuai, P. Van Den Driessche, Global Stability of Infectious Disease Models Using Lyapunov Functions, SIAM J. Appl. Math. 73 (2013), 1513–1532. https://doi.org/10.1137/120876642.
  27. J. Kiusalaas, Numerical methods in engineering with Matlab®, Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511614682.
  28. A. S. Waziri, E. S. Massawe, O. Daniel Makinde, Mathematical modelling of HIV/AIDS dynamics with treatment and vertical transmission, J. Appl. Math. 2 (2012), 77–89. https://doi.org/10.5923/j.am.20120203.06.
  29. C. Campos, C.J. Silva, D.F.M. Torres, Numerical optimal control of HIV transmission in Octave/Matlab, Math. Comput. Appl. 25 (2019), 1. https://doi.org/10.3390/mca25010001.
  30. C.J. Silva, D.F.M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, arXiv:1501.03322 [math.OC], (2015). https://doi.org/10.48550/ARXIV.1501.03322.
  31. A.V. Kamyad, R. Akbari, A.A. Heydari, A. Heydari, Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis b virus, Comput. Math. Methods Med. 2014 (2014), 475451. https://doi.org/10.1155/2014/475451.
  32. S.R. Gani, S.V. Halawar, Optimal control analysis of deterministic and stochastic epidemic model with media awareness programs, Int. J. Optim. Control Theory Appl. 9 (2018), 24–35. https://doi.org/10.11121/ijocta.01.2019.00423.
  33. A. Alshehri, S. Ullah, Optimal control analysis of monkeypox disease with the impact of environmental transmission, AIMS Math. 8 (2023), 16926–16960. https://doi.org/10.3934/math.2023865.
  34. D.A. Ouattara, Modélisation de l’infection par le VIH, identification et aide au diagnostic, PhD Thesis, Ecole Centrale de Nantes (ECN), Université de Nantes, 2006.
  35. M. Alassane, Modélisation et simulations numériques de l’épidémie du VIH-SIDA au Mali, PhD thesis, Lyon, INSA, 2012.
  36. N. Bacaër, X. Abdurahman, J. Ye, Modélisation de l’épidémie de VIH/SIDA parmi les consommateurs de drogue et les travailleuses du sexe à Kunming en Chine, Bull. Math. Biol. 68 (2006), 525–550. https://doi.org/10.1007/s11538-005-9051-y.
  37. D. Bichara, Étude de modèles épidémiologiques: Stabilité, observation et estimation de paramètres, PhD Thesis, Université de Lorraine, 2013.
  38. S.T. Karris, Numerical analysis using matlab and excel, Orchard Publications, 2007.
  39. D. Moulay, Modélisation et analyse mathématique de systèmes dynamiques en épidémiologie. Application au cas du Chikungunya, PhD Thesis, Université du Havre, 2011.
  40. S. Lenhart, J.T. Workman, Optimal control applied to biological models, Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420011418.