Decision-Making Regarding a Novel Bounded Exponentiated Weibull Mixture Model Is Applied to Certain Observed Data
Main Article Content
Abstract
The exponentiated Weibull mixture model (EWMM) is the most frequently used probability distribution in the disciplines of reliability engineering and applied linguistics. Exponentiated Weibull distributions, on the other hand, are unbounded. A variety of applications digitalize the monitored data and have bounded service regions. Different types of double truncated Weibull mixture models (BEWMM) are discussed in this article. These include the double truncated exponential mixture model (BEMM), the double truncated Rayleigh mixture model (BRMM), the double truncated Weibull mixture model (BWMM), and the double truncated generalized exponential mixture model (BGEMM). By combining a mixture model and bounded support regions, we can create a model that is extremely scalable and can capture a variety of statistical properties of the results, such as mean behavior, distribution, form, and tail behavior. We propose an alternative method for evaluating the model parameters, which aims to maximize the upper bound on the data log-likelihood function. We evaluate the (BEWMM) execution using simulated and actual data.
Article Details
References
- K. Copsey, A. Webb, Bayesian Gamma Mixture Model Approach to Radar Target Recognition, IEEE Trans. Aerosp. Electron. Syst. 39 (2003), 1201–1217. https://doi.org/10.1109/TAES.2003.1261122.
- A. Zellner, Bayesian and Non-Bayesian Analysis of the Log-Normal Distribution and Log-Normal Regression, J. Amer. Stat. Assoc. 66 (1971), 327–330. https://doi.org/10.1080/01621459.1971.10482263.
- Sylvia. Richardson, P.J. Green, On Bayesian Analysis of Mixtures with an Unknown Number of Components (with Discussion), J. R. Stat. Soc. Ser. B: Stat. Methodol. 59 (1997), 731–792. https://doi.org/10.1111/1467-9868.00095.
- J.M. Nicolas, F. Tupin, Gamma Mixture Modeled with "Second Kind Statistics": Application to SAR Image Processing, in: IEEE International Geoscience and Remote Sensing Symposium, IEEE, Toronto, Ont., Canada, 2002: pp. 2489–2491. https://doi.org/10.1109/IGARSS.2002.1026587.
- E.W. Stacy, A Generalization of the Gamma Distribution, Ann. Math. Stat. 33 (1962), 1187-1192. https://www.jstor.org/stable/2237889.
- G.S. Mudholkar, D.K. Srivastava, Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data, IEEE Trans. Rel. 42 (1993), 299–302. https://doi.org/10.1109/24.229504.
- G.S. Mudholkar, D.K. Srivastava, M. Freimer, The Exponentiated Weibull Family: A Reanalysis of the Bus-MotorFailure Data, Technometrics 37 (1995), 436–445. https://doi.org/10.1080/00401706.1995.10484376.
- G.S. Mudholkar, A.D. Hutson, The Exponentiated Weibull Family: Some Properties and a Flood Data Application, Commun. Stat. - Theory Methods 25 (1996), 3059–3083. https://doi.org/10.1080/03610929608831886.
- T. Eltoft, Modeling the Amplitude Statistics of Ultrasonic Images, IEEE Trans. Med. Imaging 25 (2006), 229–240. https://doi.org/10.1109/TMI.2005.862664.
- Kai-Sheng Song, Globally Convergent Algorithms for Estimating Generalized Gamma Distributions in Fast Signal and Image Processing, IEEE Trans. Image Process. 17 (2008), 1233–1250. https://doi.org/10.1109/TIP.2008.926148.
- M.N. Do, M. Vetterli, Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance, IEEE Trans. Image Process. 11 (2002), 146–158. https://doi.org/10.1109/83.982822.
- S.K. Choy, C.S. Tong, Statistical Wavelet Subband Characterization Based on Generalized Gamma Density and Its Application in Texture Retrieval, IEEE Trans. Image Process. 19 (2010), 281–289. https://doi.org/10.1109/TIP.2009.2033400.
- M. Allili, Wavelet Modeling Using Finite Mixtures of Generalized Gaussian Distributions: Application to Texture Discrimination and Retrieval, IEEE Trans. Image Process. 21 (2012), 1452–1464. https://doi.org/10.1109/TIP.2011.2170701.
- J.W. Shin, J.H. Chang, S. Barbara, H.S. Yun, N.S. Kim, Voice Activity Detection Based on Generalized Gamma Distribution, in: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., IEEE, Philadelphia, Pennsylvania, USA, 2005: pp. 781–784. https://doi.org/10.1109/ICASSP.2005.1415230.
- P. Kittisuwan, Image Denoising via Bayesian Estimation of Statistical Parameter Using Generalized Gamma Density Prior in Gaussian Noise Model, Fluct. Noise Lett. 14 (2015), 1550017. https://doi.org/10.1142/S0219477515500170.
- A.A. Farag, A.S. El-Baz, G. Gimel’farb, Precise Segmentation of Multimodal Images, IEEE Trans.Image Process. 15 (2006), 952–968. https://doi.org/10.1109/TIP.2005.863949.
- P. Hedelin, J. Skoglund, Vector Quantization Based on Gaussian Mixture Models, IEEE Trans. Speech Audio Process. 8 (2000), 385–401. https://doi.org/10.1109/89.848220.
- J. Lindblom, J. Samuelsson, Bounded Support Gaussian Mixture Modeling of Speech Spectra, IEEE Trans. Speech Audio Process. 11 (2003), 88–99. https://doi.org/10.1109/TSA.2002.805639.
- W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech. 18 (1951), 293–297. https://doi.org/10.1115/1.4010337.
- D.N.P. Murthy, M. Xie, R. Jiang, Weibull Models, Wiley, 2003. https://doi.org/10.1002/047147326X.
- M. Bebbington, C.-D. Lai, R. Zitikis, A Flexible Weibull Extension, Reliab. Eng. Syst. Saf. 92 (2007), 719–726. https://doi.org/10.1016/j.ress.2006.03.004.
- T. Zhang, M. Xie, On the Upper Truncated Weibull Distribution and Its Reliability Implications, Reliab. Eng. Syst. Saf. 96 (2011), 194–200. https://doi.org/10.1016/j.ress.2010.09.004.
- A. Feldmann, W. Whitt, Fitting Mixtures of Exponentials to Long-Tail Distributions to Analyze Network Performance Models, Perform. Eval. 31 (1998), 245–279. https://doi.org/10.1016/S0166-5316(97)00003-5.
- G. McLachlan, D. Peel, Finite Mixture Models, Wiley, New York, 2000.
- L. Attardi, M. Guida, G. Pulcini, A Mixed-Weibull Regression Model for the Analysis of Automotive Warranty Data, Reliab. Eng. Syst. Saf. 87 (2005), 265–273. https://doi.org/10.1016/j.ress.2004.05.003.
- T. Buˇcar, M. Nagode, M. Fajdiga, Reliability Approximation Using Finite Weibull Mixture Distributions, Reliab. Eng. Syst. Saf. 84 (2004), 241–251. https://doi.org/10.1016/j.ress.2003.11.008.
- J.A. Carta, P. Ramírez, Analysis of Two-Component Mixture Weibull Statistics for Estimation of Wind Speed Distributions, Renew. Energy 32 (2007), 518–531. https://doi.org/10.1016/j.renene.2006.05.005.
- C. M. Bishop, Pattern Recognition and Machine Learning, Springer, Berlin, 2006.
- R.D. Gupta, D. Kundu, Generalized Exponential Distribution: Existing Results and Some Recent Developments, J. Stat. Plan. Inference 137 (2007), 3537–3547. https://doi.org/10.1016/j.jspi.2007.03.030.
- R.D. Gupta, D. Kundu, Theory & Methods: Generalized Exponential Distributions, Aust. N. Z. J. Stat. 41 (1999), 173–188. https://doi.org/10.1111/1467-842X.00072.
- K.V. Sorensen, S.V. Andersen, Rayleigh Mixture Model-Based Hidden Markov Modeling and Estimation of Noise in Noisy Speech Signals, IEEE Trans. Audio Speech Lang. Process. 15 (2007), 901–917. https://doi.org/10.1109/TASL.2006.885240.
- J. Seabra, F. Ciompi, P. Radeva, J.M. Sanches, A Rayleigh Mixture Model for IVUS Imaging, in: J.M. Sanches, A.F. Laine, J.S. Suri (Eds.), Ultrasound Imaging, Springer US, Boston, MA, 2012: pp. 25–47. https://doi.org/10.1007/978-1-4614-1180-2_2.
- P. Hedelin, J. Skoglund, Vector Quantization Based on Gaussian Mixture Models, IEEE Trans. Speech Audio Process. 8 (2000), 385–401. https://doi.org/10.1109/89.848220.
- J. Lindblom, J. Samuelsson, Bounded Support Gaussian Mixture Modeling of Speech Spectra, IEEE Trans. Speech Audio Process. 11 (2003), 88–99. https://doi.org/10.1109/TSA.2002.805639.
- T. Zhang, M. Xie, On the Upper Truncated Weibull Distribution and Its Reliability Implications, Reliab. Eng. Syst. Saf. 96 (2011), 194–200. https://doi.org/10.1016/j.ress.2010.09.004.
- M. Pereyra, N. Dobigeon, H. Batatia, J. Tourneret, Segmentation of Skin Lesions in 2-D and 3-D Ultrasound Images Using a Spatially Coherent Generalized Rayleigh Mixture Model, IEEE Trans. Med. Imaging 31 (2012), 1509–1520. https://doi.org/10.1109/TMI.2012.2190617.
- T.M. Nguyen, Q.M. Jonathan Wu, H. Zhang, Bounded Generalized Gaussian Mixture Model, Pattern Recognit. 47 (2014), 3132–3142. https://doi.org/10.1016/j.patcog.2014.03.030.
- P.J. Huber, Robust Statistics, Wiley, New York, 1981.
- J. Ashburner, K.J. Friston, Unified Segmentation, NeuroImage 26 (2005), 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018.
- H. Akaike, A New Look at the Statistical Model Identification, IEEE Trans. Autom. Control 19 (1974), 716–723. https://doi.org/10.1109/TAC.1974.1100705.
- P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods, Springer, 1991.
- G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6 (1978), 461-464.
- S.G. Chang, Bin Yu, M. Vetterli, Adaptive Wavelet Thresholding for Image Denoising and Compression, IEEE Trans. Image Process. 9 (2000), 1532–1546. https://doi.org/10.1109/83.862633.
- S. Kasaei, M. Deriche, B. Boashash, A Novel Fingerprint Image Compression Technique Using Wavelets Packets and Pyramid Lattice Vector Quantization, IEEE Trans. Image Process. 11 (2002), 1365–1378. https://doi.org/10.1109/TIP.2002.802534.