On Intuitionistic Fuzzy n-Controlled Metric Spaces with Application in Economics

Main Article Content

Lifang Guo, Babar Ali, Abeer Alshejari, Tayyab Kamran, Umar Ishtiaq

Abstract

In this paper, we introduce the concept of an intuitionistic fuzzy n-controlled metric space (IFnCMS) by using \(n\) non-comparable functions \(\alpha_{i}:\Sigma\times\Sigma\rightarrow[1,\infty)\) \(\text{(1\(\leq i\leq n\))}\) in the inequalities having the form \(F(\varsigma^{o}_{1},\varsigma^{o}_{n+1},\iota^{o}_{1}+\iota^{o}_{2}+\dots+\iota^{o}_{n})\geq F\left(\varsigma^{o}_{1},\varsigma^{o}_{2},\frac{\iota^{o}_{1}}{\alpha_{1}(\varsigma^{o}_{1},\varsigma^{o}_{2})}\right)\) \(\ast F\left(\varsigma^{o}_{2},\varsigma^{o}_{3},\frac{\iota^{o}_{2}}{\alpha_{2}(\varsigma^{o}_{2},\varsigma^{o}_{3})}\right) \ast \dots \ast F\left(\varsigma^{o}_{n},\varsigma^{o}_{n+1},\frac{\iota^{o}_{n}}{\alpha_{n}(\varsigma^{o}_{n},\varsigma^{o}_{n+1})}\right)\) \(\text{for all } \iota^{o}_{n}>0\) and \(N(\varsigma^{o}_{1},\varsigma^{o}_{n+1},\iota^{o}_{1}+\iota^{o}_{2}+\dots+\iota^{o}_{n})\leq N\left(\varsigma^{o}_{1},\varsigma^{o}_{2},\frac{\iota^{o}_{1}}{\alpha_{1}(\varsigma^{o}_{1},\varsigma^{o}_{2})}\right)\) \(\circ N\left(\varsigma^{o}_{2},\varsigma^{o}_{3},\frac{\iota^{o}_{2}}{\alpha_{2}(\varsigma^{o}_{2},\varsigma^{o}_{3})}\right) \circ \dots \circ N\left(\varsigma^{o}_{n},\varsigma^{o}_{n+1},\frac{\iota^{o}_{n}}{\alpha_{n}(\varsigma^{o}_{n},\varsigma^{o}_{n+1})}\right)\) \(\text{for all } \iota^{o}_{n}>0\). Further, we provide some non-trivial examples and prove several fixed point results by utilizing an intuitionistic fuzzy version of Banach contraction and generalized \(\alpha-\phi-\)intuitionistic fuzzy contractive mapping in the setting of IFnCMS. Furthermore, we present some of its consequences to illustrate the significance of our results. Ultimately, we apply fractional differential equations used in economics to support the main result.

Article Details

References

  1. B. Schweizer, A. Sklar, Statistical Metric Spaces, Pac. J. Math. 10 (1960), 313–334.
  2. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  3. A. Maggie, On Some Results of Analysis in Metric Spaces and Fuzzy Metric Spaces, Dissertation, University of Africa, (2009).
  4. I. Kramosil, J. Michalek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika 11 (1975), 336–344. http://dml.cz/dmlcz/125556.
  5. R. Plebaniak, New Generalized Fuzzy Metrics and Fixed Point Theorem in Fuzzy Metric Space, Fixed Point Theory Appl. 2014 (2014), 241. https://doi.org/10.1186/1687-1812-2014-241.
  6. R. Vasuki, P. Veeramani, Fixed Point Theorems and Cauchy Sequences in Fuzzy Metric Spaces, Fuzzy Sets Syst. 135 (2003), 415–417. https://doi.org/10.1016/S0165-0114(02)00132-X.
  7. P. Tirado, On Compactness and G-Completeness in Fuzzy Metric Spaces, Iran. J. Fuzzy Syst. 9 (2012), 151–158. https://doi.org/10.22111/ijfs.2012.139.
  8. N. Hussain, P. Salimi, V. Parvaneh, Fixed Point Results for Various Contractions in Parametric and Fuzzy b-Metric Spaces, J. Nonlinear Sci. Appl. 08 (2015), 719–739. https://doi.org/10.22436/jnsa.008.05.24.
  9. T.L. Hicks, B.E. Rhoades, A Banach Type Fixed Point Theorem, Math. Japon. 24 (1979), 327–330.
  10. M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turk. J. Anal. Number Theory 1 (2016), 13–16. https://doi.org/10.12691/tjant-1-1-4.
  11. J. Fodor, Left-Continuous t-Norms in Fuzzy Logic: An Overview, Preprint. https://api.semanticscholar.org/CorpusID:16613725.
  12. E.P. Klement, R. Mesiar, E. Pap, Triangular Norms. Position Paper III: Continuous t-Norms, Fuzzy Sets Syst. 145 (2004), 439–454. https://doi.org/10.1016/S0165-0114(03)00304-X.
  13. M. Grabiec, Fixed Points in Fuzzy Metric Spaces, Fuzzy Sets Syst. 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4.
  14. V. Gregori, A. Sapena, On Fixed-Point Theorems in Fuzzy Metric Spaces, Fuzzy Sets Syst. 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9.
  15. K. Włodarczyk, R. Plebaniak, A Fixed Point Theorem of Subrahmanyam Type in Uniform Spaces with Generalized Pseudodistances, Appl. Math. Lett. 24 (2011), 325–328. https://doi.org/10.1016/j.aml.2010.10.015.
  16. Z. Deng, Fuzzy Pseudo-Metric Spaces, J. Math. Anal. Appl. 86 (1982), 74–95. https://doi.org/10.1016/0022-247X(82)90255-4.
  17. O. Kaleva, S. Seikkala, On Fuzzy Metric Spaces, Fuzzy Sets Syst. 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1.
  18. M.A. Erceg, Metric Spaces in Fuzzy Set Theory, J. Math. Anal. Appl. 69 (1979), 205–230. https://doi.org/10.1016/0022-247x(79)90189-6.
  19. A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
  20. S. N ˘ad ˘aban, Fuzzy b-Metric Spaces, Int. J. Comput. Commun. Control 11 (2016), 273–281.
  21. F. Mehmood, R. Ali, C. Ionescu, et al. Extended Fuzzy b-Metric Spaces, J. Math. Anal. 8 (2017), 124–131.
  22. M.S. Sezen, Controlled Fuzzy Metric Spaces and Some Related Fixed Point Results, Numer. Methods Partial Differ. Equ. 37 (2021), 583–593. https://doi.org/10.1002/num.22541.
  23. N. Saleem, H. I¸sık, S. Furqan, C. Park, Fuzzy Double Controlled Metric Spaces and Related Results, J. Intell. Fuzzy Syst. 40 (2021), 9977–9985. https://doi.org/10.3233/JIFS-202594.
  24. N. Saleem, S. Furqan, K. Abuasbeh, M. Awadalla, Fuzzy Triple Controlled Metric like Spaces with Applications, Mathematics 11 (2023), 1390. https://doi.org/10.3390/math11061390.
  25. S.T. Zubair, K. Gopalan, T. Abdeljawad, B. Abdalla, On Fuzzy Extended Hexagonal B-Metric Spaces with Applications to Nonlinear Fractional Differential Equations, Symmetry 13 (2021), 2032. https://doi.org/10.3390/sym13112032.
  26. A. Hussain, U. Ishtiaq, K. Ahmed, H. Al-Sulami, On Pentagonal Controlled Fuzzy Metric Spaces with an Application to Dynamic Market Equilibrium, J. Funct. Spaces 2022 (2022), 5301293. https://doi.org/10.1155/2022/5301293.
  27. S. Furqan, N. Saleem, S. Sessa, Fuzzy n-Controlled Metric Space, Int. J. Anal. Appl. 21 (2023), 101. https://doi.org/10.28924/2291-8639-21-2023-101.
  28. J.H. Park, Intuitionistic Fuzzy Metric Spaces, Chaos Solitons Fractals 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051.
  29. C. Alaca, D. Turkoglu, C. Yildiz, Fixed Points in Intuitionistic Fuzzy Metric Spaces, Chaos Solitons Fractals 29 (2006), 1073–1078. https://doi.org/10.1016/j.chaos.2005.08.066.
  30. N. Konwar, Extension of Fixed Point Results in Intuitionistic Fuzzy b Metric Space, J. Intell. Fuzzy Syst. 39 (2020), 7831–7841. https://doi.org/10.3233/JIFS-201233.
  31. D. Kattan, A.O. Alzanbaqi, S. Islam, Contraction Mappings in Intuitionistic Fuzzy Rectangular Extended b-Metric Spaces, Math. Probl. Eng. 2022 (2022), 1814291. https://doi.org/10.1155/2022/1814291.
  32. M. Farheen, K. Ahmed, K. Javed, et al. Intuitionistic Fuzzy Double Controlled Metric Spaces and Related Results, Secur. Commun. Netw. 2022 (2022), 6254055. https://doi.org/10.1155/2022/6254055.