Existence and Uniqueness Results for a Coupled System of Nonlinear Hadamard Fractional Differential Equations
Main Article Content
Abstract
In this paper, we examine the existence and uniqueness of solutions to a system of four-point non-separated Hadamard fractional differential equations. Applying Leray-Schauder’s alternative yields the existence of solutions; Banach’s contraction principle establishes the uniqueness of the solution. Lastly, we provide two examples to demonstrate our results.
Article Details
References
- A. Ardjouni, Existence and Uniqueness of Positive Solutions for Nonlinear Caputo-Hadamard Fractional Differential Equations, Proyecciones (Antofagasta) 40 (2021), 139–152. https://doi.org/10.22199/issn.0717-6279-2021-01-0009.
- R.P. Agarwal, B. Ahmad, A. Alsaedi, Fractional-Order Differential Equations with Anti-Periodic Boundary Conditions: A Survey, Bound. Value Probl. 2017 (2017), 173. https://doi.org/10.1186/s13661-017-0902-x.
- H.H. Alsulami, S.K. Ntouyas, R.P. Agarwal, B. Ahmad, A. Alsaedi, A Study of Fractional-Order Coupled Systems with a New Concept of Coupled Non-Separated Boundary Conditions, Bound. Value Probl. 2017 (2017), 68. https://doi.org/10.1186/s13661-017-0801-1.
- B. Ahmad, R. Luca, Existence of Solutions for a Sequential Fractional Integro-Differential System with Coupled Integral Boundary Conditions, Chaos Solitons Fractals 104 (2017), 378–388. https://doi.org/10.1016/j.chaos.2017.08.035.
- B. Ahmad, R. Luca, Existence of Solutions for a System of Fractional Differential Equations with Coupled Nonlocal Boundary Conditions, Fract. Calc. Appl. Anal. 21 (2018), 423–441. https://doi.org/10.1515/fca-2018-0024.
- B. Ahmad, J.J. Nieto, A. Alsaedi, M.H. Aqlan, A Coupled System of Caputo-Type Sequential Fractional Differential Equations with Coupled (Periodic/Anti-Periodic Type) Boundary Conditions, Mediterr. J. Math. 14 (2017), 227. https://doi.org/10.1007/s00009-017-1027-2.
- B. Ahmad, S.K. Ntouyas, A. Alsaedi, W. Shammakh, R.P. Agarwal, Existence Theory for Fractional Differential Equations with Non-Separated Type Nonlocal Multi-Point and Multi-Strip Boundary Conditions, Adv. Differ. Equ. 2018 (2018), 89. https://doi.org/10.1186/s13662-018-1546-6.
- B. Ahmad, R. Luca, Existence of Solutions for a Sequential Fractional Integro-Differential System with Coupled Integral Boundary Conditions, Chaos Solitons Fractals 104 (2017), 378–388. https://doi.org/10.1016/j.chaos.2017.08.035.
- B. Ahmad, S.K. Ntouyas, On Hadamard Fractional Integro-Differential Boundary Value Problems, J. Appl. Math. Comput. 47 (2015), 119–131. https://doi.org/10.1007/s12190-014-0765-6.
- B. Ahmad, S.K. Ntouyas, A Fully Hadamard Type Integral Boundary Value Problem of a Coupled System of Fractional Differential Equations, Fract. Calc. Appl. Anal. 17 (2014), 348–360. https://doi.org/10.2478/s13540-014-0173-5.
- A. Berhail, N. Tabouche, Existence and Uniqueness of Solution for Hadamard Fractional Differential Equations on an Infinite Interval With Integral Boundary Value Conditions, Appl. Math. E-Notes 20 (2020), 55-69.
- M. Cui, Y. Zhu, H. Pang, Existence and Uniqueness Results for a Coupled Fractional Order Systems with the Multi-Strip and Multi-Point Mixed Boundary Conditions, Adv. Differ. Equ. 2017 (2017), 224. https://doi.org/10.1186/s13662-017-1287-y.
- S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, Heidelberg, 2008. https://doi.org/10.1007/978-3-540-72703-3.
- A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2005. https://doi.org/10.1007/978-0-387-21593-8.
- J. Henderson, R. Luca, A. Tudorache, On a System of Fractional Differential Equations with Coupled Integral Boundary Conditions, Fract. Calc. Appl. Anal. 18 (2015), 361–386. https://doi.org/10.1515/fca-2015-0024.
- J. Hadamard, Essai sur l’Étude des Fonctions Données par Leur Développement de Taylor, J. Math. Pures Appl. 8 (1892), 101–186. https://eudml.org/doc/233965.
- J. Henderson, R. Luca, Positive Solutions for a System of Semipositone Coupled Fractional Boundary Value Problems, Bound. Value Probl. 2016 (2016), 61. https://doi.org/10.1186/s13661-016-0569-8.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, (2006).
- Q. Katatbeh, A. Al-Omari, Existence and Uniqueness ofMild and Classical Solutions to Fractional Order HadamardType Cauchy Problem, J. Nonlinear Sci. Appl. 09 (2016), 827–835. https://doi.org/10.22436/jnsa.009.03.11.
- K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, (1993).
- K. Pei, G. Wang, Y. Sun, Successive Iterations and Positive Extremal Solutions for a Hadamard Type Fractional Integro-Differential Equations on Infinite Domain, Appl. Math. Comput. 312 (2017), 158–168. https://doi.org/10.1016/j.amc.2017.05.056.
- I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).
- S.N. Rao, M.Z. Meetei, Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems, Int. J. Differ. Equ. 2019 (2019), 2893857. https://doi.org/10.1155/2019/2893857.
- S.N. Rao, A.A.H. Ahmadini, Multiple Positive Solutions for System of Mixed Hadamard Fractional Boundary Value Problems with (p1, p2)-Laplacian Operator, AIMS Math. 8 (2023), 14767–14791. https://doi.org/10.3934/math.2023755.
- S.N. Rao, A.H. Msmali, M. Singh, A.A.H. Ahmadini, Existence and Uniqueness for a System of Caputo-Hadamard Fractional Differential Equations with Multipoint Boundary Conditions, J. Funct. Spaces 2020 (2020), 8821471. https://doi.org/10.1155/2020/8821471.
- S.N. Rao, M. Alesemi, On a Coupled System of Fractional Differential Equations with Nonlocal Non-Separated Boundary Conditions, Adv. Differ. Equ. 2019 (2019), 97. https://doi.org/10.1186/s13662-019-2035-2.
- J. Sabatier, O.P. Agrawal, J.A.T. Machado, eds., Advances in Fractional Calculus, Springer, Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-6042-7.
- P. Thiramanus, S.K. Ntouyas, J. Tariboon, Positive Solutions for Hadamard Fractional Differential Equations on Infinite Domain, Adv. Differ. Equ. 2016 (2016), 83. https://doi.org/10.1186/s13662-016-0813-7.
- G. Wang, T. Wang, On a Nonlinear Hadamard Type Fractional Differential Equation with p-Laplacian Operator and Strip Condition, J. Nonlinear Sci. Appl. 09 (2016), 5073–5081. https://doi.org/10.22436/jnsa.009.07.10.
- J. Wang, Y. Zhang, On the Concept and Existence of Solutions for Fractional Impulsive Systems with Hadamard Derivatives, Appl. Math. Lett. 39 (2015), 85–90. https://doi.org/10.1016/j.aml.2014.08.015.
- W. Yang, Positive Solutions for Singular Coupled Integral Boundary Value Problems of Nonlinear Hadamard Fractional Differential Equations, J. Nonlinear Sci. Appl. 08 (2015), 110–129. https://doi.org/10.22436/jnsa.008.02.04.
- C. Zhai, W. Wang, H. Li, A Uniqueness Method to a New Hadamard Fractional Differential System with Four-Point Boundary Conditions, J. Inequal. Appl. 2018 (2018), 207. https://doi.org/10.1186/s13660-018-1801-0.