Existence and Uniqueness Results for a Coupled System of Nonlinear Hadamard Fractional Differential Equations

Main Article Content

Sabbavarapu Nageswara Rao

Abstract

In this paper, we examine the existence and uniqueness of solutions to a system of four-point non-separated Hadamard fractional differential equations. Applying Leray-Schauder’s alternative yields the existence of solutions; Banach’s contraction principle establishes the uniqueness of the solution. Lastly, we provide two examples to demonstrate our results.

Article Details

References

  1. A. Ardjouni, Existence and Uniqueness of Positive Solutions for Nonlinear Caputo-Hadamard Fractional Differential Equations, Proyecciones (Antofagasta) 40 (2021), 139–152. https://doi.org/10.22199/issn.0717-6279-2021-01-0009.
  2. R.P. Agarwal, B. Ahmad, A. Alsaedi, Fractional-Order Differential Equations with Anti-Periodic Boundary Conditions: A Survey, Bound. Value Probl. 2017 (2017), 173. https://doi.org/10.1186/s13661-017-0902-x.
  3. H.H. Alsulami, S.K. Ntouyas, R.P. Agarwal, B. Ahmad, A. Alsaedi, A Study of Fractional-Order Coupled Systems with a New Concept of Coupled Non-Separated Boundary Conditions, Bound. Value Probl. 2017 (2017), 68. https://doi.org/10.1186/s13661-017-0801-1.
  4. B. Ahmad, R. Luca, Existence of Solutions for a Sequential Fractional Integro-Differential System with Coupled Integral Boundary Conditions, Chaos Solitons Fractals 104 (2017), 378–388. https://doi.org/10.1016/j.chaos.2017.08.035.
  5. B. Ahmad, R. Luca, Existence of Solutions for a System of Fractional Differential Equations with Coupled Nonlocal Boundary Conditions, Fract. Calc. Appl. Anal. 21 (2018), 423–441. https://doi.org/10.1515/fca-2018-0024.
  6. B. Ahmad, J.J. Nieto, A. Alsaedi, M.H. Aqlan, A Coupled System of Caputo-Type Sequential Fractional Differential Equations with Coupled (Periodic/Anti-Periodic Type) Boundary Conditions, Mediterr. J. Math. 14 (2017), 227. https://doi.org/10.1007/s00009-017-1027-2.
  7. B. Ahmad, S.K. Ntouyas, A. Alsaedi, W. Shammakh, R.P. Agarwal, Existence Theory for Fractional Differential Equations with Non-Separated Type Nonlocal Multi-Point and Multi-Strip Boundary Conditions, Adv. Differ. Equ. 2018 (2018), 89. https://doi.org/10.1186/s13662-018-1546-6.
  8. B. Ahmad, R. Luca, Existence of Solutions for a Sequential Fractional Integro-Differential System with Coupled Integral Boundary Conditions, Chaos Solitons Fractals 104 (2017), 378–388. https://doi.org/10.1016/j.chaos.2017.08.035.
  9. B. Ahmad, S.K. Ntouyas, On Hadamard Fractional Integro-Differential Boundary Value Problems, J. Appl. Math. Comput. 47 (2015), 119–131. https://doi.org/10.1007/s12190-014-0765-6.
  10. B. Ahmad, S.K. Ntouyas, A Fully Hadamard Type Integral Boundary Value Problem of a Coupled System of Fractional Differential Equations, Fract. Calc. Appl. Anal. 17 (2014), 348–360. https://doi.org/10.2478/s13540-014-0173-5.
  11. A. Berhail, N. Tabouche, Existence and Uniqueness of Solution for Hadamard Fractional Differential Equations on an Infinite Interval With Integral Boundary Value Conditions, Appl. Math. E-Notes 20 (2020), 55-69.
  12. M. Cui, Y. Zhu, H. Pang, Existence and Uniqueness Results for a Coupled Fractional Order Systems with the Multi-Strip and Multi-Point Mixed Boundary Conditions, Adv. Differ. Equ. 2017 (2017), 224. https://doi.org/10.1186/s13662-017-1287-y.
  13. S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, Heidelberg, 2008. https://doi.org/10.1007/978-3-540-72703-3.
  14. A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2005. https://doi.org/10.1007/978-0-387-21593-8.
  15. J. Henderson, R. Luca, A. Tudorache, On a System of Fractional Differential Equations with Coupled Integral Boundary Conditions, Fract. Calc. Appl. Anal. 18 (2015), 361–386. https://doi.org/10.1515/fca-2015-0024.
  16. J. Hadamard, Essai sur l’Étude des Fonctions Données par Leur Développement de Taylor, J. Math. Pures Appl. 8 (1892), 101–186. https://eudml.org/doc/233965.
  17. J. Henderson, R. Luca, Positive Solutions for a System of Semipositone Coupled Fractional Boundary Value Problems, Bound. Value Probl. 2016 (2016), 61. https://doi.org/10.1186/s13661-016-0569-8.
  18. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, (2006).
  19. Q. Katatbeh, A. Al-Omari, Existence and Uniqueness ofMild and Classical Solutions to Fractional Order HadamardType Cauchy Problem, J. Nonlinear Sci. Appl. 09 (2016), 827–835. https://doi.org/10.22436/jnsa.009.03.11.
  20. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, (1993).
  21. K. Pei, G. Wang, Y. Sun, Successive Iterations and Positive Extremal Solutions for a Hadamard Type Fractional Integro-Differential Equations on Infinite Domain, Appl. Math. Comput. 312 (2017), 158–168. https://doi.org/10.1016/j.amc.2017.05.056.
  22. I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).
  23. S.N. Rao, M.Z. Meetei, Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems, Int. J. Differ. Equ. 2019 (2019), 2893857. https://doi.org/10.1155/2019/2893857.
  24. S.N. Rao, A.A.H. Ahmadini, Multiple Positive Solutions for System of Mixed Hadamard Fractional Boundary Value Problems with (p1, p2)-Laplacian Operator, AIMS Math. 8 (2023), 14767–14791. https://doi.org/10.3934/math.2023755.
  25. S.N. Rao, A.H. Msmali, M. Singh, A.A.H. Ahmadini, Existence and Uniqueness for a System of Caputo-Hadamard Fractional Differential Equations with Multipoint Boundary Conditions, J. Funct. Spaces 2020 (2020), 8821471. https://doi.org/10.1155/2020/8821471.
  26. S.N. Rao, M. Alesemi, On a Coupled System of Fractional Differential Equations with Nonlocal Non-Separated Boundary Conditions, Adv. Differ. Equ. 2019 (2019), 97. https://doi.org/10.1186/s13662-019-2035-2.
  27. J. Sabatier, O.P. Agrawal, J.A.T. Machado, eds., Advances in Fractional Calculus, Springer, Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-6042-7.
  28. P. Thiramanus, S.K. Ntouyas, J. Tariboon, Positive Solutions for Hadamard Fractional Differential Equations on Infinite Domain, Adv. Differ. Equ. 2016 (2016), 83. https://doi.org/10.1186/s13662-016-0813-7.
  29. G. Wang, T. Wang, On a Nonlinear Hadamard Type Fractional Differential Equation with p-Laplacian Operator and Strip Condition, J. Nonlinear Sci. Appl. 09 (2016), 5073–5081. https://doi.org/10.22436/jnsa.009.07.10.
  30. J. Wang, Y. Zhang, On the Concept and Existence of Solutions for Fractional Impulsive Systems with Hadamard Derivatives, Appl. Math. Lett. 39 (2015), 85–90. https://doi.org/10.1016/j.aml.2014.08.015.
  31. W. Yang, Positive Solutions for Singular Coupled Integral Boundary Value Problems of Nonlinear Hadamard Fractional Differential Equations, J. Nonlinear Sci. Appl. 08 (2015), 110–129. https://doi.org/10.22436/jnsa.008.02.04.
  32. C. Zhai, W. Wang, H. Li, A Uniqueness Method to a New Hadamard Fractional Differential System with Four-Point Boundary Conditions, J. Inequal. Appl. 2018 (2018), 207. https://doi.org/10.1186/s13660-018-1801-0.